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Preface

The domestication of farm animals was a seminal advance that laid the foundation 
stone for agriculture as it is known today. Compelling evidence is now available that 
the domestication process started about 10–15,000 years ago at various locations in 
the world. Choice of breeding stock was initially made by visual selection for spe-
cific phenotypes and/or traits, science-based selection only emerging in the six-
teenth to nineteenth century with the advance in statistical and genetic knowledge. 
Progress in selection and propagation of superior genotypes by conventional breed-
ing practices was glacially slow and remained so until the introduction of assisted 
reproductive technologies (ART), most notably artificial insemination (AI), in the 
first half of the twentieth century. Artificial insemination remains the most widely 
used of these technologies and has and continues to play a central role in the dis-
semination of valuable male genetics around the globe. A means of increasing the 
rate of propagation of female genomes was only achieved relatively recently with 
the development of multiple ovulation (MO) and embryo transfer technology (ET) 
in the immediate post world-war II period. The full potential of MOET is still yet to 
be realized as it plays a key enabling role in the development of the next generation 
of technologies, including in vitro production of embryos, somatic cloning and pre-
cise genetic modification. Advances in DNA methodology in this century have been 
truly remarkable. The result is genomic maps now being available for all the major 
farm animals together with tools that allow precise genome editing at specific 
genomic loci at even the single base pairs. When combined with ART, this integra-
tion of molecular and reproductive technologies has resulted in the development of 
an impressive range of innovative breeding concepts aimed at improving genetic 
gain through precise editing of the genome and its rapid dissemination made pos-
sible through a dramatically shortened generation interval. In addition to the enor-
mous potential of these advances in agriculture they also open up the prospect of 
generating new animal products, for example the provision of new models of dis-
ease for the health sciences or recombinant pharmaceutical proteins and even regen-
erative tissue or functional xenografts for medicine. Arguably, the only limit to the 
scope of animal biotechnology is the human imagination.

However, experience has revealed that translation of these developments into 
product is not straight-forward; their transformative potential raising many expected 
and unexpected ethical and legal questions that have already sparked a heated public 
debate, much of it ill-informed.
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This book is designed to provide the reader with the information needed to fully 
appreciate what is being achieved through the exciting advances in research and 
application of animal biotechnology with specific focus on the key developments in 
reproductive and molecular biology that underpin these advances. The book also 
seeks to address the major issues of concern raised by the public in relation to the 
social impact of these new methodologies together with the many legal and ethical 
aspects emerging from this. Gaining a broader public understanding and acceptance 
of animal biotechnology is seen by the authors as critical to the full realization of 
the potential of the remarkable scientific advances to address the challenges to food 
security raised by the ever-accelerating growth in human demand within the produc-
tion constraints imposed by the diminishing availability of arable land and climate 
change.

The editors trust that a better appreciation of these technologies and their poten-
tial, when applied responsibly, to combat the looming agricultural challenges faced 
by mankind, will enhance rational debate on these issues.

The editors are extremely grateful to Susanne Tonks who provided major assis-
tance in preparation of this book.

Mariensee, Germany Heiner Niemann 
Giessen, Germany  Christine Wrenzycki 

Preface
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1The Evolution of Farm Animal 
Biotechnology

Heiner Niemann and Bob Seamark

Abstract
The domestication of farm animals starting 12,000–15,000  years ago in the 
Middle East was a seminal achievement in human development that laid the 
foundation of agriculture as it is known today. Initially, domesticated animals 
were selected according to phenotype and/or specific traits adapted to a local 
climate and production system. The science-based breeding systems used today 
originated with the introduction of statistical methods in the sixteenth century 
that made possible a quantitative approach to selective breeding for specific tar-
geted traits. Now, with the availability of accurate and reliable DNA analysis, 
this quantitative approach has been extended to DNA-based breeding concepts 
that allow a more cost-effective but still quantitative determination of a genomic 
breeding value (GBV) for individual animals.

The impact of these developments was dramatically enhanced with the intro-
duction of reproductive technologies extending the genetic influence of superior 
individual animals. The first of these was artificial insemination (AI) that started 
to be developed in the late nineteenth century. Industry uptake of AI was initially 
slow but increased dramatically following the development of semen extenders, 
the reduction of venereal disease risk by inclusion of antibiotics, and most sig-
nificantly the development of effective freezing and cryostorage procedures in 
the mid-twentieth century. AI is now used in most livestock breeding enterprises, 
most notably by the dairy industry where more than 90% of dairy cattle are pro-
duced through AI in countries with modern breeding structures.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92327-7_1&domain=pdf
mailto:niemann@tzv.fal.de
mailto:Niemann.Heiner@mh-hannover.de
mailto:bob.seamark@flinders.edu.au
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Embryo transfer (ET), a technology that for the first time allowed exploitation 
of the female genetic pool, was made possible through the major advances in the 
biological sciences in the later part of the twentieth century. Advances in under-
standing of the reproductive cycle and its hormonal control, the availability of 
purified gonadotropins, and improved cell and embryo culture procedures all 
played significant roles. ET is now being increasingly implemented in top end 
breeding endeavors, particularly in the top 1–2% of a given cattle population. 
But its real impact is yet to come as ET is the key enabler in the introduction of 
the next generation of enhanced breeding technologies. ET has already played a 
key role in advances such as in vitro production of embryos, sexing, cloning, and 
transgenesis. With the birth of “Dolly,” the cloned sheep, in 1996, a century-old 
dogma in biology, which inferred that a differentiated cell cannot be repro-
grammed into a pluripotent stage, was abolished. Today, through recent develop-
ments in molecular cell biology, available protocols are efficient enough to allow 
commercial application of somatic cloning in the major farm animal species. 
This will not only further enhance the rate of genetic gain in herds and flocks but 
through the recent advent of precise genome editing tools allow the production 
of novel germlines for agricultural and biomedical purposes through the capacity 
to genetically modify farm animals with targeted modifications with high effi-
ciency. This paves the way for the introduction of the precision breeding con-
cepts needed to respond to future challenges in animal breeding, stemming from 
matching the demands of ongoing hyperbolic human population growth to the 
limited availability of arable land and environmental constraints.

1.1  Introduction

The great variety of phenotypes presently seen in domesticated animals is the prod-
uct of human-directed breeding over many centuries. Compelling evidence of 
domestication of livestock more than 10,000 years ago is provided by archeological 
findings showing that milk and dairy products were then already part of a normal 
human diet. Up to the last century, selection of breeding stock for specific pheno-
types or production traits was made by simple observation with science-based quan-
titation and breeding for specific genotypes only introduced following the 
development and introduction of statistical methodologies in the late nineteenth 
century. The accurate and reliable prediction of genetic traits made possible from 
this introduction revolutionized breeding practices and, together with advances in 
DNA technology, ultimately led to the quantitative molecular genetic selection pro-
cedures used today. The next major advance was the development over the past 
50 years, of a growing array of reproductive biotechnologies, most notably artificial 
insemination (AI) and embryo transfer (ET). The full impact emerging from linking 
molecular genetics and reproductive technology is yet to be realized. Already one 
outcome has been that it is now not only possible to precisely and reliably analyze 
genomes but in an equally precise and reliable way engineer the genome to both 
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enhance desired production traits and introduce novel production traits. Another 
impressive outcome of this alliance is the development of reliable cloning proce-
dures that utilize somatic cells as the genome source, a major achievement that 
opens new horizons of possibilities that assures an exciting future for animal breed-
ing enterprises. This chapter covers the cornerstones of the history of animal breed-
ing, from its genesis many thousand years ago to today, with focus on the 
biotechnological advances that are and will be increasingly employed by livestock 
breeding enterprises to address the hyperbolical increasing human demand for con-
ventional and novel animal products. Important milestones of this evolutionary pro-
cess of animal breeding are provided in Table 1.1.

1.2 Evolution of Farm Animal Breeding

1.2.1 From Domestication to Systematic Breeding  
Concepts for Farm Animals

Domestication of animals was the foundation stone of agriculture as it is known 
today (Diamond 2002) and a key advance in human development. Classical studies 
on the historic pathways of domestication, primarily based on archeological evi-
dence, are now being overwritten by a growing body of information provided by 
DNA studies. Analysis of mitochondrial DNA has been particularly useful in this 
regard as it is maternally inherited and has various properties, including the lack of 
recombination, high mutation rates, and the presence of multiple copies (Bradford 
et al. 2003; McHugh and Bradley 2001). Conjointly these disciplines provide com-
pelling evidence that domestication started around 10.000–15.000  BC, predomi-
nantly in the Middle East (Connolly et al. 2011). Archeological findings there and 
on the British Isles revealed that approx. 14.000–17.000 years ago, humans already 
kept farm animals and that milk and dairy products were essential parts of their 
nutrition (Beja-Pereira et al. 2006; Larson et al. 2007). DNA studies of the two main 
bovine species, taurine and zebu cattle, indicate separate domestications starting 
~8000 years BC in Southwestern Asia and the Indus valley (Zeder et al. 2006). The 
progenitor species was the aurochs (Bos primigenius), a tall and well-fortified ani-
mal with very long horns, the latter a feature still reflected in most current cattle 
breeds (Schafberg and Swalve 2015). Domestication of pigs took place indepen-
dently at predominantly two locations, in East Anatolia and China (Groenen 2016), 
sheep and goats were domesticated in West and East Asia, and horses stem from the 
Eurasian steppes (Wang et al. 2014).

The rich variety of geno- and phenotypes in farm animals now extant is the prod-
uct of man-made breeding over the intervening centuries. Using the technical 
options that were available in the respective time periods, humans have selected and 
generated populations of animals matching particular needs and purposes suited to 
specific climate and production systems. The result is the abundance of great phe-
notypic and genetic variation now found in domesticated animals including, for 
example, the more than 3000 cattle and 1300 pig breeds.

1 The Evolution of Farm Animal Biotechnology
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Table 1.1 Important milestones in the evolution of livestock breeding and animal biotechnology

~300.000 BC The first humans emerge in East Africa
~12.000–15.000 BC Begin of domestication of farm animals
~8000 BC Separation of taurine and zebu cattle
Sixteenth century AD Emergence of statistical concepts used for farm animal breeding
1677 Discovery of sperm cells
1780 First successful insemination (dog)
1866 First publication of Mendel’s laws
1891 First successful ET (rabbit)
1934 First successful ET in sheep
>1940 Emergence of quantitative genetic concepts to accelerate genetic gain 

in livestock
1949 First successful ET in goat
>1970 Widespread field application of AI in farm animals
1971 First successful freezing/thawing of mammalian embryos (mouse)
1973 First successful freezing of bovine embryos
1980 First successful production of monozygotic twins by embryo splitting 

(sheep)
1982 First calf after transfer of in vitro produced embryos
1985 First transgenic farm animals (rabbits, sheep, and pigs) via 

microinjection
1985 First successful vitrification of mouse embryos
1985 First successful IVF in pig
1986 First successful embryonic cloning in sheep
1989 Birth of the first offspring (rabbits) after use of sex-sorted semen
>1990 Increasing use of QTLs in farm animals
1996 First successful cloning with somatic cells (“Dolly”)
1998 First transgenic animal (sheep) after use of SCNT with transfected 

donor cells (“Polly”)
>2000 Growing importance of MAS concepts
2001 Concept of genomic breeding value published;

Publication of the human genome
2004 Chicken genome published
2006 Genome of dog and bee published
2009 Genome of domestic cattle and horse published
>2010 Growing implementation of GBV in important cattle breeds
2011 First pigs with a biallelic knockdown induced by the use of gene 

editing (ZFNs)
2012 Pig genome published
2013 First genetically modified pigs after use of CRISPR/Cas
2014 Sheep genome published
2017 Goat genome published

Abbreviations: ET embryo transfer, AI artificial insemination, IVF in vitro fertilization, QTL quan-
titative trait loci, MAS marker-assisted breeding, SCNT somatic cell nuclear transfer, GBV genomic 
breeding value, ZFNs zinc finger nucleases, CRISPR/Cas clustered regularly interspaced short 
palindromic repeats, BC Before Christ

H. Niemann and B. Seamark
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This rich diversity of phenotypes has been a major attractor for evolutionary 
biologists and geneticists, including Charles Darwin who used the limited data then 
available as a key component in his theory of evolutionary biology in 1859 (Wang 
et al. 2014). Their endeavors, together with the wealth of new information stem-
ming from the recent developments that allow detailed, cost-effective studies of 
individual animal genomes, have led to the accumulation of massive and complex 
datasets (Gerbault et al. 2014), requiring new modeling approaches to be developed 
that incorporate the latest statistical, population, and molecular genetics methodolo-
gies. The result of the interrogation of the data is an increasingly detailed under-
standing of domestication processes for all the major livestock species (Gerbault 
et al. 2014).

A major qualitative step in the evolution of systematic livestock breeding was 
made in the late nineteenth century with the introduction of statistical methodolo-
gies to systemic breeding practices. The initial application of statistical methods to 
animal breeding and genetics is mainly credited to Francis Galton (1822–1911) and 
Karl Pearson (1857–1936) who both worked before Mendel’s law was rediscov-
ered. One of their key findings was that on average, descendants from tall parents 
were smaller than their parents, while progeny from shorter parents was taller. This 
statistical regression of offspring on parent formed the basis of the more general 
heritability concept (Gianola and Rosa 2015). Subsequent development and appli-
cation of this and other statistical concepts was critical for the scientifically based 
animal selection programs emerging in the twentieth century (Rothschild and 
Plastow 2014). Most animal breeding issues have a quantitative dimension that can 
be addressed via the application of one or more of the plethora of powerful statisti-
cal methodologies developed during the last four to five decades (Gianola and Rosa 
2015). Application of these methodologies has allowed the recognition, introduc-
tion, and guided expansion of specific production traits to occur at an unprecedented 
rate. The emerging challenge for the livestock industry is to realize the potential of 
these advances to specific animal selection programs while maintaining sufficient 
genetic diversity for future innovations (Groeneveld et al. 2010).

1.2.2  Evolution of Scientifically Based Breeding Concepts

The twin foundations of the science-based breeding programs used in all modern 
livestock industries are quantitative genetics and reproductive biotechnology. From 
early on, there were two approaches to applying genetics to animal breeding (Blasco 
and Toro 2014). The first approach started with the rediscovery of Mendel’s law and 
sought to identify inheritable chemical or molecular markers that could be used in 
genetic studies. Initial success came from the discovery of enzymatic polymor-
phisms, through the introduction of electrophoretic technologies in the 1960s that 
could be related to blood groups and/or coat color. While these studies revealed the 
potential of using the approach to following genetic variability among animals, it, 
disappointingly, only led to the identification of a few genetic variants that could be 
used to guide breeding strategies. The second approach can be traced back to Francis 

1 The Evolution of Farm Animal Biotechnology
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Galton (1822–1911), a Victorian scientific polymath, who used a statistical approach 
in his studies of the expression of phenotypes among related animals. Both 
approaches aimed at promotion of genetic change in economically important pro-
ductive traits (Blasco and Toro 2014) and subsequently became increasingly inter-
mingled and eventually converged to exploit the genomic maps made available with 
improved DNA sequencing methods.

The genetic value of an animal is commonly described by its breeding value 
reflecting the major heritable traits being targeted for improvement in a specific 
breeding program. Developments in statistics and genomics have led to increas-
ingly more accurate breeding values, thereby improving the rate of gain. In 
dairy cattle, selection was initially targeted at important milk parameters, such 
as milk yield, milk protein, and fat contents, other physiological factors being 
of minor importance or even neglected. Today breeding values recognize the 
importance of maintaining robust health in the herd or flock and include heri-
table physiological factors, such as longevity, claw, and udder health with the 
relative weighting for milk parameters significantly reduced. These breeding 
values are now recognized globally, thus facilitating the global exchange of 
valuable genetics.

1.2.3  Advent of DNA-Based Breeding Concepts

The rapid implementation of selection strategies based on DNA analysis became 
possible through what can only be described as truly impressive advances in DNA-
analytical technology achieved since the initial attempts in the late 1960s, made 
with the simple tools then available (Shendure et al. 2017). Remarkable advances in 
multiple technologies have been made since that time, particularly in the last two 
decades. Procedures used to laboriously sequence a few kilo bases of DNA have 
now evolved to a stage where DNA studies commonly interrogate information 
derived from massive parallel sequencing of millions and myriads of DNA stretches. 
Significantly, this advance has been accompanied by a progressive and dramatic 
reduction in DNA sequencing costs to a point where being able to sequence whole 
genomes of individual humans and animals for a few hundred € or $US or even less 
(Shendure et al. 2017). A major driver for these developments have been human 
health issues, and the challenge of development and application of this capacity 
together with the growing recognition of the potential of the technology to individu-
alizing medical treatment has, not unexpectedly, resulted in a rapidly expanding 
medical biotechnology industry. The livestock industry can expect similar major 
developments following the recent availability of sequences for all the major live-
stock genomes, including cattle, pigs, sheep, horses, poultry, goat, dogs, and cats 
(see chapter of Blasco and Pena in Volume II of this book). The first nearly complete 
draft of the human genome sequence was published in 2001, the outcome of 
>10 years of intensive work, involving many laboratories and a massive expenditure 
of money (Venter et al. 2001). The pace of development of cost-effective, reliable, 
and rapid sequencing procedures since that time is a major factor in establishing and 

H. Niemann and B. Seamark
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refining the ever-growing library of complete animal genome sequences that now 
includes all major livestock species.

Detailed analysis of this valuable database has shown that animal genomes share 
a number of important features, most notably the finding that the total number of 
protein coding genes is only ~21.000–23.000 and that only a small proportion of it, 
usually 4–6% of the genome, is actively transcribed into proteins, the remaining 
major part of the genome being made up by repetitive sequences and epigenetic and 
retroviral elements, presumed, until very recently, to be uninvolved in the regulation 
of coding genes (Table 1.2). This viewpoint is being increasingly challenged by the 
finding that gene expression of an individual is being continually altered without 
any change in the genome’s sequence. Recent research has identified some of these 
now called epigenetic processes, including methylation of DNA, alterations in the 
histone molecules that hold together DNA superstructures via methylation or acety-
lation or other biochemical modifications, and various RNA and Dicer protein-
dependent processes that inhibit gene expression. In combination, the sum total of 
all these epigenetic marks in an individual is known as the epigenome.

Clearly, in the light of a growing appreciation of epigenomics and other unantici-
pated gene regulatory phenomena, our understanding of the significance of these 
noncoding elements needs analysis and revision. This is currently being undertaken 
through international collaboration, most notably through a project called ENCODE 
(Encyclopedia of DNA elements) (Kellis et al. 2014). Future refinement of breeding 
concepts will be increasingly dependent on the outputs of initiatives such as 
ENCODE to fully understand gene regulation and the role of both coding and non-
coding DNA sequences in the expression of individual traits and their propagation 
in a given population. This is important to cope with anticipated and the unexpected 
challenges to future breeding enterprises. Developments in this field are of particu-
lar interest to livestock breeders as it is known that the lifetime health and productiv-
ity of animals derived by some reproductive technologies may be associated with 
alterations of the epigenome.

A major advance in the application of DNA analysis to animal breeding was 
made with the identification and introduction of QTLs (quantitative trait loci). 
Implemented in the mid-1990s in the dairy industry, it has since led to the discovery 
of a number of important QTLs in the various farm animal species. An important 
finding from use of QTLs was the identification of causal mutations for specific 
traits (Blasco and Toro 2014). The QTL strategy was succeeded by the concept of 
marker-assisted selection (MAS). This is essentially a three-step process that 

Table 1.2 Size of genomes of farm animals

Number of chromosomes Size of the genome (Gb) Number of coding genes
Cattle 60 2,86 ~22.000
Pig 38 2,76 ~22.000–24.000
Sheep 54 2,71 ~21.000
Poultry 34 1,2 ~18.400
Horse 64 2,4–2,7 ~20.000

1 Gb = 10−9 bp

1 The Evolution of Farm Animal Biotechnology
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includes the detection of several QTLs, followed by identification of the gene which 
causes the respective mutation and finally the increase of the frequency of the favor-
able allele by selection or by introgression (Blasco and Toro 2014). Early and prom-
inent examples of the use of MAS are the halothane gene in pigs and the Booroola 
gene in sheep (Dekkers 2004).

MAS systems have now evolved further to what is called genomic selection 
(Meuwissen et al. 2001). This system was made possible through both identification 
of a dense set of informative markers that are, ideally, more or less evenly distrib-
uted across the genome and on cost-effective genotyping procedures. Genomic 
selection requires large testing populations and accurate phenotypic characteriza-
tion (Meuwissen et al. 2001). The insights into gene sequences and their location on 
the chromosomes revealed through the broad-scale use of genomic selection ensure 
a constantly improving understanding of the genetic architecture of farm animals 
and many opportunities for the identification of the molecular identifiers of eco-
nomically important traits.

The major technological advance already accelerating genomic projects in the 
major domestic species are chip arrays with several hundred thousand SNPs (single-
nucleotide polymorphisms). Chips now available commercially target 750.000 
SNPs for cattle, 56.000 SNPs for sheep, and 60.000 SNPs for pigs (Blasco and Toro 
2014). Genomic selection by this means has a number of significant advantages 
over previous programs, most significantly when used to predict the breeding value 
in the born calves and even in early embryos. Already embryo analysis by this 
means has been shown to have greater accuracy in predicting breeding value than 
the classical pedigree index, with the additional benefit of it avoiding the costs and 
time-consuming maintenance of waiting bulls. Uptake of this approach to livestock 
selection by the cattle industry is well advanced, and the genomic breeding value 
(GBV) is increasingly being implemented into the breeding programs of major 
dairy and dual-purpose breeds, such as Holstein-Friesian and Simmental.

1.3  Evolution of Reproductive Biotechnology

1.3.1  History of Artificial Insemination (AI)

Artificial insemination (AI) was the first and remains the most widely used of the 
growing armory of reproductive technologies available to the livestock breeder. As 
a consequence, there is already a library of comprehensive reviews of the origins 
and history of AI and its impact on the animal breeding enterprises (e.g., Foote 
1996; Vishwanath 2003; Ombelet and van Robays 2015; Orland 2017). Only the 
key advances in this still evolving technology are thus summarized below; for more 
detailed and informative accounts and references, see the reviews cited above.

The significance of semen in reproduction has been appreciated by most if not all 
cultures, since the earliest of times, with stories of attempt at AI part of the mythol-
ogy of several cultures. It is generally accepted that the scientifically based AI traces 
back to the seventeenth century when development of the compound microscope 
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allowed the discovery and description of mammalian sperm cells from humans and 
dogs by Antoni van Leeuwenhoek and his assistant Johannes Hamm in 1678 in the 
Netherlands (Ombelet and van Robays 2015; Orland 2017). However, it was more 
than 100 years before the first documented success with AI was recorded: in the 
1780ties in the human by the eminent scientist surgeon John Hunter, and by Lazzaro 
Spallanzani, an Italian physiologist, in a dog. Full appreciation of the potential 
value of AI to animal breeding only became evident in the late nineteenth century 
when it was made a specific subject of research (Orland 2017). Interestingly, it was 
Spallanzani, who also made the observation that human sperm became immotile 
when it accidently came in contact with snow, a seminal observation foreshadowing 
the use, 200 years later, of cryopreservation to store both sperm and ovum.

A major stimulus to this renewed interest in AI was the report in 1897 by Walter 
Heape, a British zoologist and embryologist based in Cambridge, of success in AI 
with rabbits, dogs, and horses. Significantly, his success laid the foundation, in 
1932, of the Animal Research Station in Huntington Road in Cambridge, a facility 
that was to play a lead role in the development of not only AI but many of the other 
key reproductive technologies now in wide-scale use (Polge 2007). Important mile-
stones in the subsequent history of AI include the development of dilution media to 
extend the use of single ejaculates and allow long-term storage through cryopreser-
vation of sperm, the addition of antibiotics to semen samples to control bacterial 
contamination, and the development of freezing and cooling protocols compatible 
with high survival rates of sperm cells (Table 1.3).

The rate of adoption of AI by animal breeders varied from country to country, 
impeded in part by religious, moral, and social concerns about interference with the 
natural order of things. Russia led the way following the pioneering work by 
Ivanovich Ivanov, a biologist who, by 1907, had extended the use of AI to sheep and 
a range of other domesticated animals, including foxes and poultry. Japan and 
Denmark were also early AI adopters and innovators with Edward Sorensen together 
with Gylling Holm establishing the first cooperative AI-based breeding program in 

Table 1.3 Important milestones in the history of artificial insemination (AI)

Year Discoverer Main finding
1677 Antoni von Leeuwenhoek First picture of sperm cells
1780 Lazzaro Spallanzani First insemination (in a dog)
1790 John Hunter First vaginal insemination in human
1900 Ilya Ivanov Development of semen extenders
1939 Gregory Pincus First conception (rabbit) by AI
1949 Christopher Polge et al. Discovery of cryoprotective functions of glycerol
1950 Robert Foote and R. Bratton Addition of antibiotics to semen extenders
1953 Jerome Shumann First pregnancy after AI with frozen sperm (human)
1978 Robert Edwards and 

P. Steptoe
First IVF baby (Baby Louise)

Since 
1970s

Broad application of AI in farm animals, mostly 
cattle and pigs

Modified from Ombelet and van Robays (2015)
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dairy herds in Denmark in 1936. The clear success of this program proved to be the 
stimulus needed to encourage the introduction and broad-scale uptake of AI in the 
USA and throughout the western world (Foote 1996; Vishwanath 2003). The stimu-
lation of demand for animal products triggered by World War II and its aftermath 
dramatically increased the use of AI, particularly with dairy cows, where it was 
applied not only to improve the genetics of a given herd but also to gain control over 
Brucellosis and other prevailing venereal diseases. The accompanying investment 
in research led to a continuing series of important innovations that have evolved to 
the plethora of breeding technology options available today. Significant develop-
ments in AI resulting from this investment include not only reliable and robust tech-
nology for the collection, storage, and insemination of semen but equally importantly 
accompanying refinements in animal husbandry allowing estrus detection and regu-
lation and standardized measures of fertility assessment. As a consequence, AI 
remains the primary method of choice for animal breeders around the globe seeking 
to improve the genetic quality of their stock through the realization of the genetic 
potential of valuable sires within a given population (Vishwanath 2003). For general 
breeding purposes, on average, 200–300 insemination doses can now be produced 
from a single bull ejaculate and stored frozen indefinitely; for a boar ejaculate, usu-
ally 10–20 insemination doses can be produced with semen freezing possible, but 
still at low efficiency and in small ruminants, one ejaculate can be extended to serve 
10–30 ewes and successfully cryopreserved.

Today, AI is employed in more than 90% of all sexually mature female dairy cattle 
in countries with well-advanced breeding programs. The use of AI is also increasing 
in pig production enterprises with now more than 50–60% of sows served by AI on a 
global scale. The adoption of AI for use with low unit cost animals such as sheep and 
goats is less widespread but is still employed in the breeding of greater than 3.3 mil-
lion sheep and 0.5 million goats annually with further growth anticipated following 
major refinements in estrus synchronization and insemination techniques and the 
need for flexibility in genotype of flocks to match fluxes in market demand for meat 
and fiber. AI is also now widely practiced in the poultry industry with the extremes 
of genotype found in extensively modified species such as the turkey making it oblig-
atory. The clear benefits of AI have been such that robust and reliable AI procedures 
are now being available for most domesticated non-livestock species and increas-
ingly for individual breeds of wild animals as a primary means of preserving threat-
ened genotypes (Comizzoli et al. 2000; Comizzoli and Holt 2014).

It is long known that the sperm determines the sex of the potential offspring: 
when a Y-chromosome-bearing sperm fertilizes the oocyte, the resulting 
XY-constellation leads to a male phenotype; the XX chromosome set results in a 
female phenotype. In ancient time, the Greek philosopher Democritus from Abdera 
(~450  BC) suggested that the right testis produced only males, whereas the left 
testis produced only females. Subsequently, the lack of understanding of the basic 
biological principle mentioned above has prompted numerous methodological 
approaches to be tested in their ability to achieve separation of X- and Y-chromosome-
bearing sperm. However, only the recent application of advanced flow cytometric 
systems, based on the small differences in DNA contents (3–6% depending on 
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species, with the Y-chromosome being smaller than the X-chromosome) between 
X- and Y-chromosome-bearing sperm, allows effective and reliable separation of 
living X- and Y-chromosome-bearing sperm for AI.  A major breakthrough was 
reported in 1989, when fertilization with sex-separated semen was achieved with 
surgical insemination in the rabbit and several pups were born showing the desired 
sex (Johnson et al. 1989). Later improvements of sexing protocols provided sex-
sorted semen in large enough quantities for use in bovine IVF (Cran et al. 1993). 
Nowadays, flow cytometry has been advanced to a stage that frozen/thawed sexed 
semen can be routinely supplied for bovine AI (Garner and Seidel Jr 2008) and is 
now being offered commercially by different companies around the globe. Thus the 
use of sexed semen in AI has rapidly emerged as an important new tool to enhance 
efficiency of dairy production.

1.3.2  History of Animal Embryo Transfer

A detailed history of embryo transfer (ET) can be found in the excellent publication 
from Betteridge (2003). Efforts to establish embryo transfer technology were made 
as early as the nineteenth century with a Canadian-English evolutionary biologist, 
George John Romanes (1848–1894), credited with the first, albeit unsuccessful, 
attempts. The first transfer of embryos resulting in live born offspring was achieved 
in rabbit by Walter Heape in 1890. Interestingly, Heape did his experiments at his 
home in Prestwich, near Manchester, using the rabbit breeds Angora and Belgian 
hare as embryo donors and recipients. This small-scale project typifies work in the 
biological sciences being carried out at the time. However, technological advances 
achieved in this way could still attract worldwide recognition through the intense 
network of interconnections established between biological scientists in the UK and 
elsewhere in the scientific world via the Royal Society and similar national and 
regional scientific bodies. This network was a major contributor to the rapid growth 
of understanding of reproductive biology that was to allow the full extension of ET 
to agricultural animals.

The late 1920s and early 1930s saw the beginnings of specific investment in 
developing ET for use in agriculture on both sides of the Atlantic. For example, the 
work of a group at the Institut für Allgemeine und Experimentelle Pathologie in 
Vienna, led by Artur Biedl, achieved a successful pregnancy in rabbits after 70 
transfers in 1922 (Biedl et al. 1922). However, two centers in particular are identi-
fied with the next key advances in ET, one in Cambridge, Massachusetts, USA, and 
the other in Cambridge, UK. Cambridge, USA, was the site of one groundbreaking 
development in embryo transfer technology in 1936 by Gregory Pincus, an out-
standing American endocrinologist and scientist. Six years previously he had 
reported a series of 21 embryo transfers in the rabbit that yielded 3 litters (Pincus 
1930), an achievement stemming from his introduction of the use of anesthesia to 
allow direct exposure of and access to the oviducts and ovaries and a special pipette 
he had built to facilitate ET. However, the vast majority of these and his subsequent 
experiments suffered from the lack of knowledge of the need for synchrony between 
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the embryo and the recipient uterus, an appreciation he only made in 1936 when he 
and his coworker Kirsch recovered blastocysts that had developed following trans-
fer of one- and two-cell embryos to the oviducts of rabbits at estrus, that is, before 
functional corpora lutea have been established (Pincus and Kirsch 1936). The rec-
ognition of the need for synchrony between donor and recipient provided the key to 
the development of robust and reliable ET for use in livestock breeding programs.

The first steps toward use of ET in livestock breeding had already been made in 
1931 by Hartman and his colleagues at the Carnegie Laboratory of Embryology in 
Baltimore, USA, who harvested bovine two-cell embryos for the first time (Hartman 
et al. 1931; Miller et al. 1931). This was followed a year later by the first recorded 
actual transfer of livestock embryos by the group of Berry and Warwick at the 
Agricultural and Mechanical College in Texas, USA, who used ET to investigate 
causes of early embryonic loss in sheep and goats (Warwick et al. 1934; Warwick 
and Berry 1949). To honor this achievement, Dr. Berry became the first recipient of 
the Pioneer Award of the International Embryo Transfer Society (IETS) in 1982. 
World War II interrupted progress and development of ET techniques in Europe, but 
the prevalent food shortage from the war and its aftereffects urged research aimed at 
improving livestock breeding technologies including ET. In the UK, embryo trans-
fer was identified as critical for the production of high-quality meat from beef cattle 
produced from dairy herds. This need was an important prompt for the Agricultural 
Research Council (ARC) Unit of Animal Reproduction at the Huntingdon Road in 
Cambridge, UK, the remarkable body of work on ET contributed by the Unit from 
then until its closure in 1986, making it a must go to scientific center in assisted 
reproductive technologies (ARTs). Among its early achievements were major 
advances in superovulation and the introduction by Lionel Edward Aston (Tim) 
Rowson, of nonsurgical collection of embryos in cattle breeds through his develop-
ment of a catheter for transcervical recovery. As a consequence of the broad-spread 
interest triggered by these and subsequent developments in ET among breeders of 
both livestock, specifically cattle, robust and reliable ET protocols are now available 
for a large number of species (Table 1.4).

Important contributions to embryo transfer technology in other livestock species, 
such as sheep and pigs, came from the former Soviet Union (USSR) and Poland 
(Lopyrin et  al. 1950, 1951; Kvasnitski 1951). An English translation of the 
Kvasnitski paper can be found in the proceedings of the conference held in May 
2000 in Kiev, now Ukraine, that commemorated the 50th anniversary of the first 
successful porcine embryo transfer (Kvasnitski 2001).

From the 1970s onward, ET technology developed at a rapid pace through the 
work at the ARC Unit and other groups operative throughout the world. Important 
steps in this included the development of robust and reliable superovulation and 
synchronization protocols based on the better understanding of reproductive endo-
crinology and physiology, the use of frozen semen, and the implementation of non-
surgical transfer and collection techniques. Important advances were also made in 
the development of media suitable for the holding and culture of early embryos. 
Field application of the new technologies was advanced in 1972, through an instruc-
tion course on ET technology organized in Cambridge, UK, which brought together 
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a group of veterinarians and scientists from around the globe. This group later 
played a crucial role in forming the International Embryo Transfer Society (IETS) 
(Carmichael 1980; Schultz 1980), now regarded as the lead scientific forum for the 
exchange of new ideas on embryo transfer and related technologies. In 2016, the 
name of the society was changed to “International Embryo Technology Society,” to 
better reflect the importance of the emerging embryo-related techniques such as 
in vitro fertilization, freezing, or cloning.

Another important step toward practical ET techniques was the report of the first 
successful freezing of a mammalian embryo, the mouse (Whittingham 1971), an 
advance based on the demonstration by M.C. Chang, in 1947, of the feasibility of 
this by his successful transfer of rabbit embryos that had been cooled to 10  °C 
(Chang 1947). The report of the first successfully frozen/thawed bovine embryos 
quickly followed (Wilmut and Rowson 1973). This success allowed animal breed-
ers not only to freeze and store valuable gene stock for transfer to appropriate recipi-
ents as needed but opened up the way for global exchange of gene stock through 
frozen embryos as well as sperm. Refinements in freezing protocols have been 
rapid, due in part to the co-interest in cryopreservation of human tissues. This had 
led to a number of different freezing protocols now being available for freezing 
bovine and other livestock embryos. The number of transfers of bovine embryos, 
both freshly collected and frozen/thawed, increased significantly in the last decade 
from ~823.200 in 2006 (Thibier 2008) to up to ~965.000 embryos in 2016 (Perry 
2017). While ET is widely used in dairy and parts of beef cattle, it is much less 
applied in pigs (few thousand ETs), small ruminants (few hundred ETS), and horses 
(few thousand ETs) (Perry 2017). Thus, embryo transfer technology is now an inte-
gral part of modern breeding concepts for cattle and is widely applied across the 
globe. However, while embryo transfer technology allows a better exploitation of 

Table 1.4 First successful (with the delivery of live offspring) embryo transfers in different 
species

Year Author Country Species
1891 Heape UK Rabbit
1933 Nicholas USA Rat
1934 Warwick et al. USA Sheep
1942 Fekete and Little USA Mouse
1949 Warwick and Berry USA Goat
1951 Willett et al. USA Cattle
1951 Kvasnitski UdSSR (Ukraine) Pig
*1964 Mutter et al. USA Cattle
1968 Chang USA Ferret
1974 Oguri and Tsutsui Japan Horse
1976 Kraemer et al. USA Primate
1978 Steptoe and Edwards UK Human
1978 Shriver and Kraemer USA Cat
1979 Kinney et al. USA Dog

*Transcervical transfer
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the genetic potential of the female germ pool than AI, it is still only used in the top 
1–2% of a breeding population.

A major expansion of interest in ET technology followed the landmark achieve-
ment in human reproductive medicine with the birth of Louise Brown in 1978 in 
Oldham, UK, following in vitro fertilization and transfer procedures developed by 
Robert Edwards, a Cambridge, UK, physiologist, and Patrick Steptoe, a surgeon 
from Oldham, UK (Edwards and Steptoe 1978). The foundation stones for Edwards’ 
success were laid nearly 20 years earlier in what has been described as a golden age 
in IVF studies (Bavister 2002). Highlights of this era were the reports of Anne 
McLaren and John Biggers of successful development and birth of mice cultivated 
in vitro as early embryos (McLaren and Biggers 1958) and, a year later, MC Chang’s 
findings that in vitro fertilized rabbit eggs could develop normally following trans-
fer to surrogate mothers (Chang 1959).

A prime motivation for Edwards’ in vitro fertilization was his interest in address-
ing the high incidence of infertility in humans, in particular the growing number of 
women in the post-pill era with infertility due to hydrosalpinx, a blockage in their 
fallopian tubes that could be traced to a prior reproductive tract infection, most 
commonly chlamydia. Demonstrating that in vitro fertilization of human oocytes 
was possible was the first step (Edwards et al. 1969); the next was for Steptoe to 
use his skills in laparoscopy to develop minimally invasive procedures allowing 
repeated collection of oocytes that Edwards could fertilize in vitro and reimplant in 
the uterus thus by-passing the damaged tubes and achieving pregnancy. Their 
epoch-making achievement was the culminating point of Robert Edwards lifetime 
of pioneering research in human infertility and earned him the Nobel Prize in 2010 
(Johnson 2011).

IVF is now used to address a wide range of fertility issues, and the number of 
babies born from assisted reproductive technologies (ART) is increasing rapidly: 
their numbers have more than quadrupled since 1995, and to date, >5 million babies 
worldwide have been born after ART (ESHRE 2009). ART births constitute 1.5–
4.5% of all births in the USA and other countries such as the UK (Sunderam et al. 
2018; HFEA 2011). In livestock breeding, the technology initially lagged behind 
that in human, with the first successful IVF from in vivo matured oocytes in cattle 
in 1982 (Brackett et al. 1982) and entirely from IVM/IVF/IVC in 1987 (Fukuda 
et al. 1990) and in the pig in 1985 (Cheng et al. 1986). IVM/IV + IVC have now 
been refined to a stage that it is possible to repeatedly harvest oocytes by laparo-
scopic and nonsurgical techniques, mature and fertilizing the harvested oocytes 
in  vitro, followed by culture of the resultant zygotes to the blastocyst stage for 
transfer to synchronized recipients. These IVM/IVF/IVC procedures are now being 
widely used for experimental studies and commercially as well, for recovery of 
valuable gene stock postmortem (usually from abattoirs), and to reduce the genera-
tion interval via collection of oocytes from juvenile animals (JIVET). Current global 
figures revealed a total of ~450.000 entirely in vitro produced bovine embryos that 
had been transferred to recipients with geographical emphasis in South America 
(Perry 2017). The application of IVM/IVF/IVC combined with cryopreservation 
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procedures in the introduction of highly productive genotypes is now supporting 
development of China’s dairy herds.

1.3.3  “Dolly” and Beyond

The birth of an ewe named “Dolly” in Scotland in July 1996 opened up a new world 
of possibilities for animal breeders. Dolly’s distinction was the fact that she was the 
first cloned mammal derived from a fully differentiated adult cell (Wilmut et  al. 
1997), a fact that challenged the then ruling paradigm that genes not required in the 
development of specific tissues were lost or permanently inactivated (Weissmann 
1893). From the animal breeders’ perspective, this was interpreted as limiting any 
developments in cloning technology to cells from early embryos, that is, before 
cells become committed to their specific differentiation pathway. This limiting para-
digm was a consequence of studies made with amphibian embryos in 1952 by 
Robert Briggs and Thomas J. King in Philadelphia, USA. Using the amphibian spe-
cies Rana pipiens, and the nuclear transfer procedures they had specifically devel-
oped for the purpose, they showed that while normal tadpoles could be obtained 
after transplanting the nucleus of a blastula cell into the enucleated egg, tadpole 
development became increasingly restricted as cells underwent differentiation 
(Briggs and King 1952). This led to the hypothesis that the closer the nuclear donor 
is developmentally to early embryonic stages, the more successful nuclear transfer 
is likely to be. Support for this viewpoint came from John Gurdon, an Oxford, UK, 
based developmental biologist, who used another amphibian, the frog Xenopus lae-
vis, as model species. Xenopus has some distinct advantages over Rana pipiens, 
because (1) the embryos can be grown to sexual maturity in less than a year, (2) 
Rana pipiens lives more than 4 years, and (3) Xenopus frogs can be induced to lay 
eggs throughout the year after hormonal injections. In contrast, Rana pipiens and 
other frogs are strictly seasonal. Gurdon showed that only with less differentiated 
donor cells, he could achieve development and developmental rates dropped when 
more differentiated cells were used as donors (Gurdon 1960, 1962, 2017). This 
viewpoint prevailed for many years and had a strong influence on the design of 
experiments in the 1970s and 1980s.

Cloning of mammals became possible when laboratory equipment became avail-
able in the late 1960s and early 1970s that allowed micromanipulation of the much 
smaller mammalian eggs (100–130 μm in diameter, i.e., about one tenth of the 
diameter of the amphibian egg). The first report on cloning in mammals was by 
Illmensee and Hoppe (1981) who reported the birth of three cloned mice after trans-
fer of nuclei from the inner cell mass cells of a blastocyst into enucleated zygotes. 
However, these results could not be repeated, with other researchers finding that 
development was arrested following the transfer of the nucleus of a zygote or two-
cell embryos into an enucleated zygote (McGrath and Solter 1983). The same 
researchers also found no development when nuclei from donor cells from later 
development stages were used (McGrath and Solter 1984). This led the authors to 
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conclude that cloning of mammals by nuclear transfer would be biologically impos-
sible, presumably due to the rapid loss of totipotency in developing embryonic cells. 
The challenge to this viewpoint came only few years later in 1986, from Steen 
Willadsen, a Danish developmental biologist working in the ARC Unit in Cambridge, 
UK, through his demonstration that nuclei obtained from blastomeres from cleav-
age stage ovine embryos could be inserted into enucleated oocytes and viable lambs 
obtained following transfer to recipient ewes (Willadsen 1986). This major techni-
cal advance, together with the later finding that donor cells could even be obtained 
from the inner cell mass (ICM) of bovine blastocysts (Sims and First 1994), estab-
lished a base for the following successful embryonic cloning of rabbits, mice, pigs, 
cows, and monkeys (for review see Niemann et al. 2011).

The possibility of cloning mammals through somatic cells was heralded in 
1996/1997 through the publication of two landmark papers by the group at the Roslin 
Institute, Edinburgh, Scotland, UK. Their initial achievement was the demonstration 
of the feasibility of deriving donor nuclei from an established cell line derived from 
a day 13 ovine conceptus and maintained in vitro for several passages (Campbell 
et al. 1996). This remarkable success they attributed to their synchronizing of the cell 
cycle of the donor cells through lowering the concentrations of serum in the culture 
medium, thus causing the cells to exit the cell cycle and hold at the Go stage. Transfer 
of donor cells from these quiescent cell lines to enucleated matured oocytes and 
transfer of the reconstructed embryos into synchronized recipient ewes resulted in 
the birth of two healthy cloned lambs called “Megan” and “Morag.” Their achieve-
ment encouraged the group to extend their studies to somatic cells derived from 
mammary epithelial tissue that led to the birth of “Dolly” the following year (Wilmut 
et al. 1997). The prospect of translation of these findings into animal breeding enter-
prises was enhanced by “Dolly” living a rather normal life at the Roslin Institute until 
she had to be euthanized in February 2003 due to a fatal pulmonary disease caused 
by the adenomatosis virus endemic in Scottish sheep flocks. The significance of this 
advance is documented through the exhibition of Dolly’s preserved remains in the 
Science and Technology Galleries of the National Museum of Scotland, Edinburgh 
(Fig. 1.1). Interestingly, Dolly is one of the museum’s most popular exhibits and has 
become a symbol of Scottish national pride (García-Sancho 2015). Important steps 
into the evolution of somatic cloning are depicted in Table 1.5.

Dolly’s birth launched a heated ethical debate worldwide and sparked a series of 
science fiction stories. Initially, the origin of Dolly from a fully differentiated donor 
cell was questioned by many scientists. However, in the next 5–10 years, the validity 
of their claims was proven and the feasibility of somatic cell cloning fully realized and 
established as an important tool in research. Somatic cloning by somatic cell nuclear 
transfer (SCNT), resulting in the production of live clones, has now been successfully 
extended to more than two dozen species, including sheep, cattle, mouse, goat, pig, 
cat, rabbit, horse, rat, dog, ferret, red deer, buffalo, gray wolf, camel, and very recently 
nonhuman primates (see Niemann 2016; Liu et al. 2018), and, despite a slow start, has 
been developed to a stage where it is now being offered commercially in all the impor-
tant agricultural species, including cattle, pigs, and horses.

The underlying mechanisms that determine success in somatic nuclear transfer 
are still a subject of active research. One initial hypothesis was that the clones only 
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arose from a subpopulation of stem cells (Hochedlinger and Jaenisch 2002). 
However, this was short lived as evidence built up showing that differentiated 
somatic cells can successfully be employed in SCNT. The reprogramming of the 
genome following nuclear transfer causes dramatic changes of the epigenetic land-
scape of the donor cell consistent with the expression profile of the differentiated 
cells being abolished and a new, embryo-specific expression profile established to 
drive embryonic and fetal development (Niemann et al. 2008). It is now known that 
such epigenetic reprogramming involves the erasure of the gene expression pro-
gram of the respective donor cell and the reestablishment of the well-orchestrated 
sequence of expression of the estimated 10,000–12,000 genes critical for early 
embryonic development. Through Dolly, mammalian development is now estab-
lished as having high plasticity with significant implications for many areas in the 
natural sciences and in public debate.

Soon after “Dolly” the sheep was born, the journal “Cloning” was launched in 
1999 to cover the emerging new information in this area. The journal was expanded 
in 2002 and 2010 to include all mechanisms of cellular reprogramming and is now 
called “Cellular Reprogramming” (Wilmut and Taylor 2018). This reflects the dra-
matic impact of somatic cell cloning not only on animal breeding but in both the 
biological and medical sciences. One use is in the derivation of so-called induced 

Fig. 1.1 Dolly, the first 
mammal cloned from a 
somatic cell, can be visited 
in the Scottish National 
Museum in Edinburgh
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pluripotent stem cells (iPSCs) in 2006 (Takahashi and Yamanaka 2006), an advance 
which earned S. Yamanaka the Nobel Prize together with John Gurdon in 2012 and 
established iPSCs as important tools for derivation of patient-specific therapeutic 
stem cells and regenerative medicine. In the biological sciences, SCNT has proven 
to be a research tool of great value in the study of early development and epigenetic 
mechanisms governing the expression of genes that regulate embryonic and fetal 
development (Kues et al. 2008; Niemann 2014).

SCNT is now developed to a stage where it has commercial application in major 
farm animals, including cattle, pigs, and horses. However, its main impact on ani-
mal breeding will not be through cloning of existing genomes but through its use as 
a route allowing the full armory of genome editing tools to be applied to the animal 
genome, allowing precise modification of existing genes or precise insertion of new 
genes in the animal genome.

Table 1.5 Important milestones in the development of somatic cloning via somatic cell nuclear 
transfer (SCNT)

Author Year Main findings
Spemann 1938 Embryonic development and early differentiation
Briggs and 
King

1952 Viable tadpoles from nuclei transplanted from blastula stages in 
Rana pipiens; nuclei are multipotent

Gurdon 1962 Viable tadpoles from intestinal epithelial cells in Xenopus laevis; 
nuclei are multipotent

Gurdon and 
Uehlinger

1966 Fertile adult frogs from intestinal epithelial cells of feeding 
tadpoles in Xenopus laevis; nucleus is still totipotent

McGrath and 
Solter

1984 Arrested development of reconstructed mouse embryos; claim: 
Mammalian cloning is biologically impossible

Willadsen 1986 Successful nuclear transfer-based cloning using embryonic donor 
cells in sheep (8–16 cells)

Tsunoda et al. 1987 Successful nuclear transfer in mice using 4–8 cell embryos as 
donors

Prather et al. 1987 Successful cloning of cattle by using 2–32 cell stage embryos as 
donors

Sims and First 1994 Successful cloning of cattle by using cultured cells from the inner 
cell mass (ICM) of blastocysts

Campbell et al. 1996 Successful cloning of sheep by using 13-days-old cultured fetal 
donor cells

Wilmut et al. 1997 Dolly, the sheep, successful cloning from a fully differentiated 
(mammary epithelial) cell

Cibelli et al. 1998 Successful somatic cloning of cattle using fibroblasts as donors
Wakayama 
et al.

1998 Successful somatic cloning of mice using adult cells

Many different 
authors

Since 
1998

>24 species have been successfully cloned up to 2018

Liu et al. 2018 Successful cloning of nonhuman primate

Modified from Gurdon (2017)
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1.4  Genome Editing and Precision Breeding

The demonstration, in 1980, by Jon W. Gordon and Frank Ruddle at Yale University, 
USA, that it was possible to introduce new and functional genetic material into the 
germline of laboratory rodents heralded a new era in animal breeding. Called trans-
genesis, it was achieved by microinjection of foreign DNA into oocytes shortly after 
fertilization (Hammer et al. 1985). The potential application of this powerful new 
tool was immediately recognized, and within 5 years the creation of the first geneti-
cally modified farm animals, including rabbits, pigs, and sheep, had been achieved 
(Hammer et al. 1985).

However, the microinjection approach to germline modification proved to be 
highly inefficient in practice and had other major limitations due the fact that it only 
allowed additive gene transfer and that the introduced DNA was integrated ran-
domly in the recipient genome and a frequent incidence of mosaicism. These limita-
tions were only overcome with the development of cell-based gene transfer methods 
realized following the confirmation of the feasibility of using SCNT by the birth of 
Dolly. SCNT-based procedures were quickly developed that now allow the full 
application of DNA editing technology to be applied to the somatic cells in culture 
prior to the introduction of the modified genome into the germline. The introduction 
of SCNT and its capacity to allow the selection and use of highly defined donor cells 
dramatically improved the production of genetically modified livestock. As a conse-
quence, a whole new range of useful application models became available not only 
for rodents and other species used in basic research but for various livestock species 
with new traits of interest to agricultural and biomedical enterprises (Laible et al. 
2015). However, cell-mediated transgenesis was still hampered by the inability to 
produce animals with targeted genetic modifications. This was at least partly due to 
the fact that in farm animals, in contrast to laboratory species (mouse and rat), 
robust and reliable procedures for the establishment of true pluripotent stem cell 
cultures have not yet been achieved (Nowak-Imialek and Niemann 2012). Primary 
cells only have a limited lifespan in culture, and being limited to their use in SCNT 
was not compatible with the high selection needed for targeted mutations, thus 
severely limiting the extent of the genetic modification that could be achieved.

This situation changed dramatically with the introduction of genome editing 
technologies based on the use of DNA nucleases (see Petersen and Niemann 2015). 
These molecular scissors, including zinc finger nucleases (ZFN), transcription acti-
vator-like effector nucleases (TALEN), and the CRISPR/Cas (clustered regularly 
interspaced short palindromic repeats) system, allow precise modifications of the 
genome. In animals all three nucleases can be applied either via microinjection into 
early fertilized eggs (zygotes) or after transfection into donor cells that are subse-
quently used in somatic cloning. Within a few years following their introduction, 
numerous research groups have described the successful production of genetically 
modified cattle, pigs, and sheep covering a range of potentially useful genetic modi-
fications, both for agricultural and biomedical application (Petersen and Niemann 
2015; Telugu et al. 2017).

1 The Evolution of Farm Animal Biotechnology



20

For the first time, it became possible to overcome the limitations of the glacially 
slow classical breeding and selection processes traditionally used in agricultural 
enterprises. Using the new technologies of genome editing, new phenotypes can be 
produced and introduced within a single generation (Laible et al. 2015). Furthermore, 
with the capacity to target and edit individual genes or noncoding sequences in the 
genome in combination with the use of homologous recombination protocols, to 
introduce new DNA sequences provides the basis for establishing a whole new 
world of opportunities for animal breeding enterprises.

To date, only a limited number of products from genetically modified animals 
have been approved for use through the national supervisory bodies established to 
monitor and govern the use of these technologies. All were derived by conventional 
transgenic technologies, including recombinant human antithrombin (ATrynR) 
from goat milk for prophylactic treatment of hereditary antithrombin deficiency 
within a surgery, recombinant C1 esterase inhibitor from rabbit milk for treatment 
of hereditary angioedema (HAE) (Ruconest®), and Kanuma (sebelipase alfa®), a 
recombinant human enzyme that is produced in egg white of hens to treat lyso-
somal acid lipase deficiency. Pigs and other livestock with enhanced production 
traits have been developed, but only one has been accepted for commercial use, 
namely, the AquAdvantage Atlantic salmon from the company Aquabounty. Of 
concern is that the fish which grows twice the size of the normal Atlantic salmon 
over the same time period only received official approval from the FDA, the super-
visory body in the USA, in 2015, 20 years after its development and after a major 
regulatory battle. It will be interesting to see how products from animals derived 
from gene editing will be legalized as similar genetic changes may occur naturally, 
making it difficult, if not impossible, to identify the origin of the mutation. The 
recent acceptance in March 2018 of the safety of products derived through gene 
editing in food plants by the FDA is encouraging. The genomic maps of both plants 
and farm animals are constantly being refined, and a wealth of new opportunities 
for genomic editing that majorly expand genetic diversity from a variety of impor-
tant application perspectives can be confidently anticipated (Petersen and Niemann 
2015; Telugu et al. 2017).

1.5  Future Perspectives

Modern animal breeding strategies, mainly based on population genetics, novel 
molecular tools, and assisted breeding technologies (ARTs) such as AI and ET, have 
significantly increased the performance of domestic animals. This forms the basis 
for a regular supply of high-quality animal-derived food and fiber at competitive 
prices. For example, in both Australia and the USA, Holstein-Friesian dairy bovine 
milk production increased annually by about 1%, corresponding to 40–80 kg/cow/
year, between 1980 and 2010 (Hayes et al. 2013). Gains that played an important 
part in the reduction are seen in the costs of milk and milk products. Similar gains 
were achieved in the efficiency of production of other animal-derived food prod-
ucts, such as meat and eggs.
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The introduction of precision breeding concepts based on genome editing is an 
important step in allowing the necessary developments required to address com-
pounding challenges in global food security, environmental sustainability, and ani-
mal welfare (Rothschild and Plastow 2014). It is predicted that by the year 2050, the 
global population will have grown up to 9.5–10 billion people. This growth will take 
place mainly in developing countries and in major urban areas requiring a dramatic 
increase in food production, including animal-derived protein. Estimates of future 
need for meat products indicate that meat production will need to increase by at 
least 70% to cope with this future demand. As the majority of arable land is already 
in production, there is a clear challenge to livestock breeders to increase efficiency 
of food production from both intensive and non-intensive animal production enter-
prises in a sustainable manner (Telugu et al. 2016). Encouragingly, considerable 
genetic variation for traits contributing to efficiency improvements in all livestock 
species still exists (Hayes et al. 2013). Realizing the full potential of these traits and 
the introduction of new traits will require the precision breeding concepts intro-
duced in this brief history. DNA-based breeding concepts and genome editing are 
critical for ensuring an efficient and sustainable future for both plant- and animal-
based agricultural enterprises. Further development and acceptance of bioengi-
neered products will also be of immense medical importance in the generation of 
models for human diseases, xenotransplantation, the production of pharmaceuti-
cally active proteins, environmental remediation, and regenerative medicine.

The USDA has recently accepted (March 2018) that with precision editing now 
possible mutations would be indistinguishable from rare but possible natural muta-
tions and stated that it does not and has no plans to regulate gene editing of plants 
or crops but will still treat plants with introduced foreign genes as GMOs (geneti-
cally modified organisms). Experience gained from repeated attempts to gain accep-
tance of genetically modified meat products suggests that there is still a way to go 
for even the most subtle gene modifications. The pathway to public acceptance of 
genome editing technologies in farm animals is probably an indirect one through 
initial demonstrations of its safety and value in addressing issues of animal welfare, 
human health, and sustainability. Procedures from genomic editing in animals must 
be rigorously screened for off-target mutations to avoid any violation of the integ-
rity of the animal. This is now entirely feasible using advanced CRISPR/Cas and 
similar systems. The value of persisting in seeking to introduce this approach more 
broadly in the livestock sector has been confirmed by the recent demonstration that 
genome editing can be used to increase the genetic gain in farm animal breeding in 
both the short- and medium-term perspective. By applying gene drive concepts 
using genome editing tools, increasing the allele frequency using gene drive mecha-
nisms would accelerate genetic gain even further and without the risk of increased 
inbreeding (Gonen et al. 2017). This viewpoint is supported by a recent simulation 
study that revealed that this approach could be used to refine the increase in genetic 
gain through accelerating the increase in the frequency of favorable alleles and 
reducing the time to fix them in germlines; labeling nucleotides, for a more rapid 
targeting of quantitative traits; and finally increasing the efficiency of converting 
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genetic variation into genetic gain (Gonen et al. 2017), all desirable capacities for 
inclusion in future breeding concepts.

In summary, researchers and animal breeders now have tools in hand to modify 
the genome in a previously unprecedented very precise manner. The potential to 
rapidly increase favorable genes in a given population is an important step toward 
achieving genetic gain and modulating economically important gene loci. These 
opportunities need to be exhaustively explored and their potential fully assessed as 
they are of vital importance to development of the animal enterprises needed to 
combat the looming challenges to food security from the hyperbolically increasing 
demands and predicted climatic and environmental uncertainties. These advances 
need to be carried out in a manner that ensures sufficient transparency and informa-
tion to the public and decision-makers so that there is a general understanding of the 
importance and need for full support for initiatives in this area.
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Abstract
Agricultural animals, by definition, must have utility. There are dozens of desir-
able agricultural phenotypes, even within a species, and they vary according to 
the hundreds of agricultural environments on our planet. In the course of domes-
tication and husbandry of animals, phenotypes have continually evolved, a pro-
cess that has accelerated over the past century. Specifying desirable phenotypes 
of future farm animals has become exceedingly complex and now includes char-
acteristics such as carbon footprint, minimization of greenhouse gases, and mod-
ifying methods and products to adapt to wants of consumers and activists, many 
of whom have no connection with agriculture.

The tools for attaining phenotypic improvements of animals include increasingly 
powerful biotechnologies, which are sometimes oversold. In some cases the bio-
technologies even drive phenotypes, as, for example, sperm of dairy bulls have 
become more tolerant of cryopreservation since bulls whose semen does not tolerate 
cryopreservation leave few progeny due to extensive use of artificial inseminations 
with frozen semen. In any case, biotechnologies are tools, and should be used to 
benefit mankind as well as animals. There are costs to making any change in animal 
agriculture (including making no change), and the benefit to cost ratio should be the 
main consideration in evaluating a change. Benefits, such as many fewer people 
killed by bulls through use of artificial insemination, and costs, such as discomfort 
to animals due to confinement, also need to be considered when evaluating biotech-
nologies. Baggage such as whether the technology was developed by a company vs. 
nonprofit organization or whether DNA was modified in the laboratory vs. a “natu-
ral” mutation should be minor considerations relative to efficacy, minimizing unde-
sirable side effects, and what is best for the animals and the environment.
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2.1  Introduction

Although I grew up on a farm with a variety of livestock species and currently own 
a beef cattle ranch, I have attempted to prepare this chapter as a practicing scientist. 
While this point of view will be primarily scientific, readers may bring many differ-
ent perspectives to the discussion, including religion, philosophy, conservation, etc.

The task at hand is to anticipate phenotypes of ideal future agricultural animals 
and the role of biotechnology in achieving those phenotypes. Mankind evolved with 
animals, and has depended on them in various ways over the ages. Domestication of 
animals has greatly enriched our evolution, especially over the last 10 millennia, 
although in many cultures co-domestication is another way of thinking. For example, 
in dairying cultures, humans evolved to lifelong functioning of lactase for digestion, 
and in many situations, companion animals consume embarrassing amounts of 
resources. Even in many agricultural situations, the bond between persons and ani-
mals has similarities with interpersonal bonds. An uptick in depression and suicide 
among owners of dairy herds decimated by catastrophe has been postulated to be due 
partly to disruption of such bonds. Despite the above considerations, the main 
emphasis of this chapter will be in the context of agriculture, i.e., the products and 
services that domestic animals provide, such as food, fiber, power, and by-products.

What phenotypes are we aiming for in agricultural animals? I have listed some 
of these in Table 2.1. A second discussion is required about the approaches to attain/
maintain these phenotypes, and biotechnology is one of the important tools avail-
able (Table 2.2). I also summarize trends in Fig. 2.1, which are likely to continue for 
the foreseeable future. Biotechnology has to be implemented in the context of these 
trends.

Agricultural animals, with very few exceptions such as game farms, have been 
domesticated to various degrees from wild animals. There is some pressure based on 
ethical grounds to reverse domestication of agricultural animals genetically, i.e., make 
them more like their wild progenitors. While ethical issues are an important consider-
ation in choosing what phenotypes to aim at in selection, these often are more related 
to our own moral well-being than what is best from the animal’s perspective. An 
example: all animals will die, and nearly all agricultural animals will be killed 

Table 2.1 Examples of 
desirable phenotypes of 
agricultural animals

Efficient growth, reproduction, milk production, etc.
Robust health, disease resistance, etc.
Suitable end-product characteristics, e.g., meat, milk, hides, 
athletic performance
Safety to personnel, docility, etc.
Environmental fit such as tolerance to heat and parasites
Minimizing environmental impact, e.g., methane and CO2 
production
Appropriate, even pleasing, phenotypes for their purposes
Longevity in breeding populations
Minimizing variability, predictability
Profitability and sustainability
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deliberately, before they live out a “natural” life span. Some methods of killing ani-
mals are offensive to people, and this varies greatly from culture to culture. However, 
if the method is quick, painless, and minimally stressful beforehand, the specific 
method is of no interest to the animal. The term natural life span is an oxymoron for 
domesticated animals and especially agricultural animals. If not killed deliberately for 
production purposes, life spans of domestic animals often greatly exceed those of 
similar wild animals. Also, I contend that cattle, for example, that are culled for vari-
ous reasons resulting in beef, die much more humanely than wild counterparts or 
animals left to die of “old age” without deliberate euthanasia when debilitated. 
Carnivores such as wolves, buzzards, and mountain lions in North America kill with 
much more stress and pain than occurs when cattle are killed for beef. One of the costs 
of managing livestock in more “natural” settings such as mountain pastures or plots 
for “free-range” chickens is that some will be killed by wild carnivores. Of course, it 
is the responsibility of those in agriculture to minimize such painful endpoints, both 
on moral and sustainability grounds.

Table 2.2 Approaches to attaining/maintaining desirable phenotypes

Selective breeding, selective culling, genomic evaluation
Assisted reproductive technologies
Data collection, evaluation, and use in management
Environmental manipulations, such as shelter, cooling/warming practices, etc.
Management practices such as vaccinations, and castration
Pharmacological interventions such as growth implants, bst, prophylactic antibiotics, methane 
suppressors, etc.

Inputs:

Feed-Conventional
Feed-Byproducts
Capital
Veterinary Care
Phenotypic Information
Genetic Information
Research

Water Use
Land Use
Energy Use
Time
Labor

Selective Breeding
Management
Information Technology
Precision Nutrition
Vaccination
Taxes/Tariffs
Advertising
Market Fluctuations 

Connecting with
      Consumers
Growth and Other
      Regulators
Assisted Reproduction
       Technology
Optimizing Environments

Cultural Norms
Antibiotics

*Sustainability will require optimization of the factors in this figure. The number one requirement for sustainability is profitability.
Long term, resources will not be invested in animal agriculture unless profitable, including a “livable wage” for personnel.

Carbon Footprint
Greenhouse Gasses
Entertainment
Status e.g., Capital Asset
Manure/Waste Products
Way of Life (Raising Children)

Primary Production (Milk, Meat,
Fiber, Draft Power, Eggs)
Food Safety/Healthfulness
Byproducts (e.g., Hides, Feathers)
Docility
Animal Health/Disease Resistance
Safety (Animal and Personnel)
Pleasing Phenotypes
Animal Well-Being; Genetic
        Matching to Environment
Consumer Information

Tools: Output:

Fig. 2.1 Trends per Unit of Animal Products. Sustainability will require optimization of the fac-
tors in this figure. The number one requirement for sustainability is profitability. Long term, 
resources will not be invested in animal agriculture unless profitable, including a “livable wage” 
for personnel
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2.2  Phenotypes

By definition, phenotypes of domestic animals are manipulated by people (although 
there are also cases of animals farming animals). Even in so-called game farms, out-
lier animals are culled, and, obviously, subsequent generations result from those ani-
mals that in fact reproduced in the environment. Put differently, the phenotypes of the 
population will change in the direction of those who reproduce, and away from the 
phenotypes of those not reproducing. Much of Darwin’s thinking on evolution was 
inspired by his observations of which domestic animals reproduce (Darwin 1859).

Later in this paper I will expand on methods of manipulating phenotypes, but for 
now keep in mind that methods can be genetic, environmental, and managerial plus 
interactions among these. Several of the phenotypes in Table 2.1 are required even 
for agricultural animals to exist. The animals must have some minimal level of 
docility. Animals that routinely kill farmers or routinely escape are not phenotypes 
that will endure as farm animals. An obvious required trait is reproduction. Also, for 
the system to survive, it must be profitable. In my opinion, agriculture that is unduly 
subsidized is more like a zoo than a farm.

After the basic requirements of docility, reproduction, and sustainability are met, 
farmers have sought to improve animals for traits like health, longevity, product 
characteristics, and efficiency. All of these must meet minimal standards. For exam-
ple, unpalatable milk or meat will not suffice, nor wool unsuitable for applications. 
Farmers with animals that are chronically ill or debilitated will go out of business. 
There also needs to be some minimal level of efficiency, maximizing the amount of 
product produced per unit of input such as feed, labor, and especially time.

Over the past few decades attempts to change (improve) phenotypes have con-
centrated in two broad areas, efficiency and quality of product, while of course 
retaining minimal levels of nearly all the characteristics in Table 2.1. Results have 
been spectacular, particularly in efficiency. The amounts of meat and milk produced 
per unit of feed, labor, environmental impact, time, etc. have increased dramatically 
(Hume et al. 2011), and this has enabled satisfying the needs/wants of a doubling 
population with much less than a doubling of inputs such as land use or waste prod-
ucts such as methane production. A particularly important trait is maximizing the 
number of offspring per breeding female, as this affects profitability, efficiency, 
sustainability, environmental impact, etc. Also, new traits evolve continually such as 
suitability of cows to adapt to robotic milking, in which cows enter the milking sta-
tion at times and frequencies of their own choosing (Jacobs and Siegford 2012).

There, of course, have been some problems/costs associated with the drive for 
efficiency, for example, lower reproductive success in dairy cows (Lucy 2001), 
increased dystocia from larger calves in beef cattle, and leg problems in broiler 
poultry (Paxton et al. 2013). Three points need to be made about this situation:

 1. There are costs and benefits to every change, and it is the ratio of benefits to costs 
that is most important; there will be costs.

 2. Costs can be minimized or ameliorated once identified. For example, reproduc-
tion in dairy cows is now improving since various reproductive traits are now 
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included in selection schemes; the nadir in reproduction in North America 
occurred a decade ago (Garcia-Ruiz et al. 2016). Dystocia has greatly decreased 
in beef cattle in North America, particularly for primiparous heifers, and there 
now is almost undue selection pressure for easy calving. Broilers with severe leg 
problems are unprofitable and morally offensive, and this problem is being coun-
tered with genetics, nutrition, etc.

 3. Animal agricultural systems are sufficiently complex that it is impossible to 
anticipate all of the costs (and benefits!) when making phenotypic changes via 
genetics, environmental manipulations, or other means.

This does not constitute an excuse for not attempting to address these preemp-
tively, but does mean that outcomes should be monitored, problems identified, and 
changes made to ameliorate or correct or even abandon the planned change. Thus, 
collecting empirical information is required. Evaluating phenotypic changes via 
projects at universities, agricultural institutes, government laboratories, etc. is one 
mechanism to evaluate phenotypic changes effectively.

Many are trapped in thinking that it is best to maintain the status quo, or even aim 
at phenotypes present decades ago. There are plenty of problems (and benefits) with 
current and past phenotypes, and doing nothing to improve/correct these cannot be 
justified ethically.

Recently there has been a shift away from emphasizing direct phenotypic effi-
ciency and concentrating on traits such as health, minimizing pain, and ecological 
aspects such as carbon footprint, and minimizing production of greenhouse gases 
(Herrero et al. 2016). Emphasizing these while maintaining efficiency and quality of 
product is important. This shift in emphasis is due in part to recognizing the impor-
tance of nonefficiency traits and in part due to societal demands. Funding agencies 
also drive research in this direction, and marketing forces have a huge impact. New 
technologies such as robotic milking, methods to minimize parasites, and approaches 
to minimize heat stress can be very positive from the perspective of animal welfare.

2.3  Manipulating Phenotypes

Most people, including many scientists, usually first think of using genetics when 
considering changing phenotypes. As alluded to earlier, huge changes also are made 
routinely via the environment, particularly via nutrition. Other examples (Table 2.1) 
are improving health via vaccinations, improving docility via management prac-
tices, decreasing birthweight via induced parturition, manipulating health and effi-
ciency via more or less ambulation, and adding methane suppressors to feed (Hristou 
et al. 2015). There are also innumerable experiments on the interaction of nutrition 
and/or other management factors with genetics. For example, there appears to be an 
interaction between genetic background and whether dairy cows get the bulk of 
their nutrition from grazing or via stored feed (Washburn and Mullen 2014). For 
efficient beef production, it may be preferable to select replacement heifers man-
aged with limited nutrient intake (Funston and Summers 2013).
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There almost always are interactions of genetic propensity for growth or milk 
production with nutrient availability. For example, beef cattle that produce large 
amounts of milk survive poorly under semidesert range conditions (which consti-
tute a huge percentage of the worldwide environment for beef cattle); not only do 
animals end up in poor body condition, they often fail to get pregnant, or pregnancy 
is greatly delayed under such conditions, whereas other genotypes/phenotypes 
thrive. Recently, my colleagues and I revived the concept of the single-calf heifer 
system of producing beef, which at least theoretically is much more efficient than 
conventional beef production, but has very different optimal phenotypes (Seidel Jr 
and Whittier 2015). For example, in this system all animals are slaughtered before 
reaching 30 months of age so longevity is of limited interest, nor is there a need to 
establish pregnancy during lactation.

Despite these important environmental and managerial aspects of manipulating 
phenotypes, making genetic changes is quite important and has the huge advantage 
that, once made, requires minimal inputs; moreover changes are transmitted to 
future generations. Reproductive biotechnologies are especially valuable in effect-
ing genetic changes (Taylor et al. 2016).

With rare exceptions, genetic changes are almost entirely due to manipulating 
allelic frequencies. New alleles are constantly being added to the population via 
mutations, most of which are both recessive and deleterious. However, there are 
many beneficial recessive alleles.

In any case, the most powerful method of changing allele frequencies to make 
phenotypic changes has been selective breeding (which is simply choosing the par-
ents of the next generation). Examples of the success of this process abound, such 
as the more than tenfold differences in mature size and weight among breeds of 
dogs and horses and similar magnitudes in various traits in cattle, rabbits, poultry, 
etc. Tools to speed up selective breeding abound, with the spectacularly effective 
example of artificial insemination in cattle. Of course, one must also consider the 
less mundane tools such as superovulation, in vitro fertilization, embryo transfer, 
cloning, sexed semen, etc. which excite the imagination, and while extremely pow-
erful, usually do not measure up to the power of artificial insemination in practice. 
Of course, these tools are usually superimposed on artificial insemination and its 
benefits. All of these tools require information such as records, genotypes, etc. to be 
effective.

A special case is transgenic manipulations, which enable adding specific new 
alleles at precise locations on chromosomes as opposed to those that occur de novo 
from spontaneous mutations. So-called genetically modified organisms are of two 
varieties, those for which intraspecies changes such as making animals polled 
instead of with horns or moving genes/alleles from heat-tolerant breeds to intolerant 
breeds. Many contend that these animals should not be designated as genetically 
modified organisms because identical changes could be made, although slowly, by 
introgression without any need for molecular manipulations. Modifying animals by 
using DNA sequences from another species or sequences designed de novo are in a 
different category and require more stringent testing for safety, etc. However, from 
a purely logical perspective, most of these deliberate changes are less problematic 
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theoretically than the billions of mutations that occur daily within every species in 
the natural course of reproduction. In fact, intraspecies alterations also occur natu-
rally as in the Agrobacterium genes recently found in sweet potatoes, something 
that occurred naturally in the course of domestication millennia ago and which 
mimic exactly in principle what geneticists have done with Bt transgenic crops 
(Kyndt et al. 2015).

In any case, it would seem that the end product should be the important issue, not 
how it was produced, and apart from possible negative by-products of the method 
such as overuse of a resource or creation of an undesirable by-product, it is spec-
tacularly illogical, for example, to discriminate sugar produced from genetically 
modified vs. nonmodified sugar beets since the sugar is identical in every respect 
(Oguchi et al. 2009), and the genetically modified beets result in greatly decreased 
amounts of insecticide and herbicide use, plus a greatly decreased carbon 
footprint.

Some of the procedures for modifying allele frequencies are more invasive to 
animals than others, for example, those requiring surgery such as embryo transfer to 
the oviduct, although even this can be accomplished laparoscopically. Nearly all 
procedures are invasive in some respect; for example, even simple selective breed-
ing requires identifying specific animals, and as a practical matter, this requires 
branding, tattooing, or ear tagging as examples. Most people do not object to 
momentary pain to animals; even vaccinating animals requires restraint and usually 
an injection with a hypodermic needle.

2.4  Marketing

One of the forces that interferes with use of scientific or even logical consideration 
of phenotype is marketing forces. For example, retailers use various means to dif-
ferentiate their products from those of others with terms such as non-GMO, local, 
natural, organic, bst-free, etc. These labels rarely have a scientific basis in terms of 
a safer or more efficacious product, although sometimes there is a component of 
animal welfare such as cage-free eggs. Often the labels are misleading or nonsensi-
cal, such as labeling animal products as gluten-free. These marketing forces can be 
extremely powerful, and often override any scientific considerations. While most of 
the world is stuck with the consequences of marketing forces, these should not over-
ride decisions of policy makers. For example, supplying poor people with nutritious 
food is often driven by policy makers who are not at all poor, and their biases creep 
into decision-making.

2.5  Biotechnologies

Individual biotechnologies are discussed in other chapters of this volume, and I will 
have embarrassingly little to say about them; I have written about them in some detail 
previously (Seidel Jr 1991, 2015). One issue is simply defining biotechnology. For 
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example, I consider selective breeding, ovulation synchronization, and artificial 
insemination to be biotechnologies; they are extremely powerful and efficacious. In 
the context of this chapter, I do not consider vaccination, growth implants, and tools 
such as ultrasonography as biotechnologies, although they could be argued either 
way, depending on context. Use of SNP chips for selective breeding (Meuwissen 
et al. 2013) is another very powerful tool that could be classified either way.

Evaluating individual biotechnologies is complicated by interactions and multi-
ple benefits/costs. For example, sexed semen is useless without artificial insemina-
tion or in vitro fertilization. Artificial insemination and superovulation plus embryo 
transfer require selective breeding information to be efficacious in most contexts, 
although there are nongenetic benefits such as reduced venereal diseases; interest-
ingly, these technologies even synergize with selective breeding by providing robust 
data on individuals (Soller 2015). There are the biotechnology-specific phenotypes 
to deal with such as fertility of cryopreserved semen with artificial insemination, 
responses to superovulation, accuracy of sexed semen, etc. Determining normalcy 
of offspring from cloning, transgenics, sexed semen, etc. represents another set of 
biotechnology-specific endpoints.

Despite these complexities, agriculturists and the rest of the world are stuck with 
continuing to use biotechnologies if we are to feed the growing world population 
without destroying the environment. One can argue that there should be less animal 
and more plant agriculture, but severe reduction in the animal component would 
waste resources that end up producing food such as by-products fed to animals, 
inedible plants eaten by grazing ruminants, etc. (Wilkinson 2011). Also, animals are 
important culturally, and we would be less human (and likely less humane) without 
animals. An ethical issue would be having to allocate resources to either animals for 
food vs. animals for companionship. Hopefully we can continue to accommodate 
both; increased use of biotechnology will be needed to do so.
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3Artificial Insemination in Domestic 
and Wild Animal Species

Dagmar Waberski

Abstract
Artificial insemination (AI) is the key technology in livestock production for 
achieving genetic progress and maintenance of genetic diversity. It is also a basic 
tool for advanced assisted reproductive technologies in animal species. This arti-
cle reviews the state-of-the-art and current development in AI, including its prin-
ciple steps, i.e., collection, evaluation, and preservation of semen, as well as 
various insemination strategies. Opportunities for this first-generation biotech-
nology are illustrated in domestic and wild animal species against the back-
ground of emerging molecular techniques.

3.1  Introduction: Artificial Insemination as the Key 
Technology in Animal Reproduction

Artificial insemination (AI) is the key technology in livestock production and is 
critically important for the maintenance of genetic diversity. Moreover, it is funda-
mental for the use of many other assisted reproductive technologies (ARTs) in 
domestic and wild animals. In addition, AI has been recognized as the least- invasive, 
low-cost, and most promising biotechnology for companion animals, non-domestic 
animals, and endangered species (Durrant 2009). AI comprises the collection and 
preservation of semen and its manual or instrumental transfer into the female repro-
ductive tract. The basic steps of AI and semen use for other ARTs are illustrated in 
Fig. 3.1. In the public perception, artificial insemination is often misinterpreted as 
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“artificial fertilization.” These terms should be strictly differentiated from each 
other because of significant different meanings.

As a first generation and to date the most widely used biotechnology, AI evolved 
during the last century to routine technique in countries with significant livestock 
production. In today’s agricultural industry in the developed countries, AI is used in 
about 80% of dairy cattle and more than 90% of breeding sows. Efficiency of AI 
together with progress in second- and third-generation biotechnologies will be 
important to overcome the increasing energy demand from animal sources created 
by the anticipated increase in world population from 7.6 billion people in 2017 to 
9.8 billion by 2050 (United Nations 2017). Initially, in 1940, the development of 
commercial AI was triggered by the worldwide threat of venereal diseases in cattle, 
such as trichomoniasis and brucellosis which led to a dramatic loss of food produc-
tion and decrease of the global economy. To date, the prevention of direct contact 
between female and males with artificial breeding remains crucial for prevention of 
epizootic diseases.

The major technological breakthrough for the application of AI in livestock pro-
duction was the development of efficient semen preservation methods, particularly 
the use of frozen-thawed semen, thereby allowing the geographically and timely 
independent use of male genetics distributed in multiple semen doses. More than 
1000 frozen semen doses can be produced from a single bull ejaculate. This has 
enabled the enormous acceleration of genetic progress, especially when AI was com-
bined with modern reproductive technologies, and more recently genomic selection. 
Albeit semen cryopreservation seems to be well established in farm animal species, 
with exception of the pig, the sperm-intrinsic cold shock sensitivity still limits 
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efficiency of AI. For this reason, and for the great importance of satisfying require-
ments of semen quality to be used for gene banking, current and emerging technolo-
gies relating to freezing technology will be discussed below in a more detailed 
manner. Another major contribution to progress in AI was the establishment of AI 
management strategies on the farm. With the possibility of sonographic detection of 
ovulation, it quickly became apparent that the time interval between insemination 
and ovulation is a key factor for successful AI. Strategies for proper timing of insemi-
nation, therefore, will be another main topic described in this chapter. A more recent 
milestone was the introduction of sex-sorted sperm for use in AI. This technology 
stimulated the development of low-dose AI techniques to compensate for the limited 
availability and reduced quality of flow cytometric-sex- sorted sperm. Current and 
future opportunities of AI technology will be illustrated in domestic and wild mam-
malian species with major advances or application in AI practice.

3.2  Semen Collection

3.2.1  Artificial Vagina

In domestic farm animals, semen usually is collected from genetically superior, 
healthy sires, which have successfully passed breeding soundness and health inspec-
tions. For other species where legislative regulations do not limit trade, e.g., wild or 
exotic animals, a clinical andrological examination, including a spermiogram, 
should precede semen collections for AI purpose in order to exclude males with 
hereditary defects or fertility problems. Various semen collection methods are avail-
able. Species-specific mating behavior, prospects for training effects, animal wel-
fare, and effects on quality and quantity of the collected ejaculate may contribute to 
the decision about which collection technique is preferable. The goal of any semen 
collection is to obtain a complete, high-quality ejaculate, without compromising 
safety of the personnel and the animals, including the female teasers.

Male reproductive behavior is initiated by sexual stimuli and can be divided into 
three distinct phases with a characteristic sequence of reflexes:

 – Precopulatory phase: excitatio sexualis—erectio penis—emissio penis
 – Copulatory phase: ascensus—circumplectio—adjustatio penis—immissio penis 

frictio (species dependent, e.g., stallion, boar) or  propulsus (e.g., bull, ram, 
buck)—ejaculatio

 – Postcopulatory phase: descensus—relaxatio penis—calmatio sexualis

Ideally, a semen collection method has to be incorporated into the physiological 
mating behavior without disturbing the reflex chain. This is accomplished in domes-
tic ruminants, horses, and camelids by use of an artificial vagina (AV), consisting 
typically of a rubber tube with a soft non-spermicidal inner liner and an attached 
semen collection vessel. In these and other species, thermo receptivity of the glans 
penis and its sensitivity to pressure are critical for the initiation of ejaculation. 
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Consequently, the artificial vagina must mimic the temperature and pressure condi-
tions of the natural vagina. These conditions are achieved by filling warm water 
between the outer rubber tube and the inner smooth rubber line. To enhance the 
stimulatory effect of the AV, the temperature is set slightly above body temperature 
(41 °C). Environmental conditions are also important for successful semen collec-
tion. Sires in AI centers usually are trained to mount artificial dummies (Fig. 3.2), 
thereby allowing risk-free, easy, and hygienic semen collections. Additional expo-
sure to female teasers, preferentially in estrus, will enhance sexual stimulation, 
especially in horses. This shortens the reaction time, which is defined as the time 
interval from presentation of the mounting partner until first mounting, and presents 
a measure for the libido sexualis. Further stimulation may be achieved by false 
mounting, i.e., mounting without allowing immissio penis and subsequent steps of 
the mating cascade. In contrast to other production animals, semen collection in 
boars does not require the use of an AV. Instead, the simulation of cervical contrac-
tions by rhythmic digital pressure using the “gloved hand technique” or by auto-
matic semen collection systems is essential to initiate ejaculation. This mimics 
natural mating conditions, where the corkscrew-like tip of the penis is anchored into 
the helical cervix uteri of the sow during the 5–15 min of the ejaculation phase.

3.2.2  Electroejaculation

For species or individual animals where the use of AV is not possible, for example, due 
to handling conditions, e.g., zebu (Bos indicus) or Bali bulls (Bos javanicus) under field 
conditions in the tropics, or physical conditions, e.g., leg disease, electroejaculation 
(EE) is the method of choice (Sarsaifi et al. 2013). A sine-wave electrostimulator con-
nected to a rectal probe with three embedded electrodes is used to administer pulse 
stimuli to autonomic nerves in the pelvic plexus, the lumbar and sacral region involved 

Fig. 3.2 Semen collection 
in a stallion at a dummy 
using an artificial vagina
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in reflexes ultimately leading to ejaculation. A lack of response to electrical stimuli 
may however occur. Indication for use of this technique should be strict because of 
several concerns. First, EE is associated with pain and therefore consideration of ani-
mal welfare is mandatory (Palmer 2005). Animals can be therefore sedated or anesthe-
tized, and the technique should be applied by experienced operators as gently as 
possible with respect to the pulse frequency and length of rest intervals between wave 
pulses. Retrograde ejaculation or urine contamination resulting from the use of EE 
renders the semen unusable. In addition, EE affects the seminal plasma composition 
and yields ejaculates of larger volumes and lower sperm concentration owing to the 
direct stimulation of the accessory glands. Nevertheless, reports on Zebu and Brown 
Swiss bulls (León et al. 1991) as well as in Guirra rams (Marco-Jiménez et al. 2005) 
suggest that sperm quality is not affected by collection via electrical stimulation, 
although an increased retention of cytoplasmic droplets due to disrupted removal of 
droplets as would occur during natural ejaculation conditions cannot be ruled out. 
Motility of frozen-thawed sperm previously collected by EE was significantly reduced 
by an average of 10% compared to that collected with an AV in the bull study, whereas 
post-sperm viability parameters were not impaired in EE semen in Guirra rams. 
Noteworthy, the birth of offspring of an endangered wild equid subspecies, the Persian 
onager, from AI using a frozen- thawed electroejaculated semen was reported (Schook 
et al. 2013), although use of EE in equids is discouraged due to their temperament and 
the likelihood of trauma to the animal, the operator, or the handlers (Cary et al. 2004).

3.2.3  Transrectal Massage

Alternatives to EE should be considered due to animal welfare concerns or when 
animals do not respond to EE. Manual transrectal massage (TM) in the area of the 
ampullae seminal vesicles, prostate, and pelvic urethra was effective in 80% of 
range beef bulls and from 95% of yearling beef bulls accustomed to handling 
(Palmer 2005). However, semen quality was reduced compared to EE, presumably 
due to a higher contamination caused by the inability of penis emission. Semen has 
been collected successfully from elephant bulls (Schmitt and Hildebrandt 1998) and 
large ungulates by TM, but massage requires a male sufficiently accustomed to 
handling and restraint (Durrant 2009).

3.2.4  Collection of Epididymal Spermatozoa

In case of severe illness or accident of a valuable animal, terminal or postmortem 
recovery of Spermatozoa from the cauda epididymis is an applicable tool for germ-
plasm rescue. The retrograde flushing method after cannulating the vas deferens is 
superior to the flotation technique in excised epididymal tissue pieces due to lower 
risk of contamination and better spermatozoa quality after freezing (Martinez-Pastor 
et al. 2006). Compared to ejaculated spermatozoa, cauda epididymal spermatozoa 
have not been in contact with seminal plasma and are more resistant to stressors 
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associated with cryopreservation, e.g., osmotic imbalances and cold shock. Successful 
AI using frozen epididymal spermatozoa has been reported for several domestic spe-
cies (incl. sheep, Ehling et al. 2006; cattle, Bertol et al. 2016; horse, Morris et al. 
2002; pig, Holtz and Smidt 1976) and a few endangered species (see Ref. in Durrant 
2009).

In pigs and likely in other species as well, fertility of epididymal spermatozoa 
can be improved adding seminal plasma to the thawing solution, presumably by 
activation of spermatozoa motility and prevention of premature capacitation 
(Okazaki et al. 2012). The health of the male, storage duration and conditions of the 
isolated genital organs postmortem, and the use of freezing protocols specifically 
adapted for epididymal spermatozoa are critical factors of cryopreservation success. 
Pregnancies were reported in four out of ten mares after deep uterine AI with fro-
zen-thawed epididymal spermatozoa when the epididymis had been stored at 5 °C 
up to 48 h, although a significant decline in spermatozoa motility compared to 24-h 
storage period was observed (Stawicki et  al. 2016). Storage of epididymides for 
approximately 18  h at ambient temperature (18–20  °C) maintains spermatozoa 
quality and in vitro fertilization capacity of Zebu bull spermatozoa, although low 
pregnancy levels were achieved even after 30  h of storage (Bertol et  al. 2016). 
Prospects for successful AI using frozen-thawed epididymal spermatozoa are high, 
even with inferior spermatozoa quality, when AI timing is optimized and low-dose 
AI techniques are used.

3.3  Semen Evaluation

3.3.1  Basic Spermatology

The goal of domestic farm animal semen evaluation for eventual AI is primarily to 
eliminate ejaculates with poor fertility potential and to determine sperm concentra-
tion in order to calculate the appropriate dilution with the extenders for the intended 
number of spermatozoa per AI dose. Semen analysis in AI centers is performed 
within a few minutes after collection on each ejaculate in a production routine. 
Typically, standard semen parameters are established and consist of visual assess-
ment for contaminants, determination of semen volume, assessment of sperm con-
centration, and microscopic analysis of sperm motility, followed by an estimation of 
sperm morphological characteristics of individual spermatozoa. Additionally, in 
most cases, sperm motility and membrane integrity are reevaluated after a brief stor-
age period or cryopreservation. This is necessary since high-quality native semen 
does not guarantee a high preservation capacity of the spermatozoa. Evaluation of 
digitalized microscope images with computer-assisted sperm analysis (CASA) has 
become increasingly popular in AI laboratories allowing kinematic analyses and 
detection of distinct morphological abnormalities (reviewed by Amann and 
Waberski 2014). Recognition of structural integrity, e.g., membrane integrity, can 
be incorporated in CASA systems equipped with fluorescence modules. Overall, the 
benefit of CASA in AI centers is its potential to provide objective measurements of 
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sperm motion. With increasing computational power, the introduction of digital 
holographic imaging of unlabeled (Di Caprio et al. 2015) or fluorescently labeled 
(Su et al. 2016) spermatozoa into routine semen analyses is anticipated. Such high-
throughput computational imaging of sperm in deep (ca. 100 μm) chambers and 
statistical quantification of large pools of 3D trajectory data offer new possibilities 
for the characterization of swimming patterns in sperm subpopulations, possibly 
adding a new tool for the assessment of fertility potential.

Under field conditions in the tropics or the wilderness, standardized semen evalu-
ations may be much more challenging due to lack of available laboratories and/or 
sophisticated equipment, in addition to sometimes harsh environmental conditions. 
Lens-free digital (Tseng et al. 2010) or simplified lens (Kobori et al. 2016) micro-
scopes equipped with sample temperature control attached to smartphones or tablet 
computers may result in easy-to-use, low-cost field-compatible devices. Appropriate 
software apps would then give instantaneous information regarding semen quality and 
spermatozoal kinematics or enable telediagnosis by experts in remote laboratories.

3.3.2  Advanced Spermatology

The tendency to increase AI efficiency by lowering sperm numbers per AI dose or 
the use of “stressed” spermatozoa, e.g., after sex-sorting and/or cryopreservation, 
requires additional measures to estimate the fertility potential. The high variability 
in semen quality observed in animals held under extreme field conditions, e.g., Zebu 
bulls, or the use of genome-selected young bulls during their first months of collec-
tion requires subtle semen evaluation procedures in order to determine their suit-
ability for liquid storage or cryopreservation. In addition, advanced sperm assays 
could help to explain causes of subfertility of individual males with normal sperma-
tological reports, denoted as “idiopathic sub- or infertility.” A plethora of sperm 
assays are available and more are being developed. A comprehensive review of cur-
rent and potential future methods, including their potential for fertility prognosis, 
can be found elsewhere (Rodriguez-Martinez 2014). Current methods primarily 
involve flow cytometric assessment of structural and functional sperm integrity. The 
simultaneous assessment of plasma membrane and acrosome integrity by a combi-
nation of two different fluorophores, e.g., propidium iodide, a membrane imperme-
able DNA stain, and FITC-labeled peanut agglutinin with its ability to bind 
acrosomal galactose residues, has become the most widely used application of flow 
cytometry in spermatology. Plasma membrane integrity often is equated with sperm 
viability, albeit this trait is far from being predictive of the fertility potential of indi-
vidual spermatozoa. To take into account the pronounced vulnerability of sperm 
membranes to cold shock and senescence in  vitro, flow cytometric analysis of 
10,000 spermatozoa per sample within a few seconds has evolved as an important 
tool for the assessment of storage effects. The potential of flow cytometry has 
increased enormously in recent years due to the large numbers of commercially 
available fluorophore probes targeting virtually all compartments of the spermato-
zoon. Chromatin structure, formation of reactive oxygen species, lipid peroxidation, 
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and apoptotic- like changes, all, for example, associated with cryopreservation and 
in  vitro aging (Hossain et  al. 2011; Martínez-Pastor et  al. 2010; Petrunkina and 
Harrison 2011; Peña et al. 2016), can be assessed. Flow cytometers equipped with 
at least three lasers in combination with four and more fluorescent markers allow 
the simultaneous multicolor analyses of traits of individual cells. Therefore, flow 
cytometry can visualize the heterogeneity of a semen sample by differentiating sub-
populations within the cohort of “viable,” i.e., plasma membrane intact sperm. 
Ideally, such analyses would be performed at different time points after incubating 
sperm in in vitro capacitating media to consider dynamic changes in subpopulations 
as expected to occur in vivo (Petrunkina et al. 2007). Multicolor flow cytometry in 
conjunction with advanced computational data analysis may refine the identification 
of sperm subpopulations responding to capacitation conditions or cryopreservation 
(Ortega-Ferrusola et al. 2017a). High-end cytometry will remain restricted to spe-
cialized andrology laboratories and mainly for research purposes. Meanwhile low- 
end flow cytometry has become commonplace in AI laboratories, for example, for 
analyses of membrane integrity of frozen-thawed spermatozoa. Innovation in fluo-
rescence technology is appealing but requires increased human input to setup, per-
formance, and maintenance of the instruments and preparation of semen samples 
and selection of fluorescence dyes and ultimately in data interpretation (Petrunkina 
and Harrison 2013). Thus, AI centers may benefit from external specialized labora-
tories for advanced semen tests, especially for selection of young males, in situa-
tions of unexplained subfertility or for quality control of semen processing.

3.3.3  The Future: “-Omics” in Spermatology

In addition to spermatology, cytogenetic or molecular screening is used to detect 
chromosomal abnormalities affecting fertility of males. Reciprocal translocations are 
associated with increased embryonic mortality causing significant economic loss, 
especially in the prolific porcine species (Popescu et al. 1984). It is estimated that 
approximately 50% of boars with low fertility are carriers of this abnormality, even 
though they have a normal phenotype and semen profile (Rodríguez et al. 2010).

Current advances in molecular biology related to “-omic sciences” open com-
pletely new possibilities for developing male fertility biomarkers based on the anal-
ysis of the transcriptome and proteome, both in spermatozoa and seminal plasma. 
With increasing knowledge of the functionality of spermatozoa, proteomic tools can 
be complemented with flow cytometry, allowing rapid assays to investigate sperm 
function at a single-cell level (Ortega-Ferrusola et al. 2017b).

Utilization of molecular diagnostic tools for semen evaluation may go beyond 
the estimation of fertilizing capacity. Large numbers of datasets have recently been 
generated and analyzed with the aim to gain a better understanding of the epigenetic 
mechanisms in sperm and their function postfertilization (Casas and Vavouri 2014). 
There is now evidence that noncoding microRNAs (miRNA) in the fertilizing sper-
matozoa, albeit present in small quantity, influence preimplantation development 
and even the phenotype of the offspring (Jenkins and Carrell 2011). Moreover, it has 
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been shown that traumatic stress in early life alters miRNA expression in mouse 
sperm leading to behavioral and metabolic responses in the progeny (Gapp et al. 
2014). Future “-omic” analysis of semen components should consider seminal 
plasma proteomes, not only due to their potential to serve as fertility marker but also 
in light of the recent finding that seminal fluid influences the metabolic phenotype 
of offspring in mice (Bromfield et al. 2014). At present, genome-wide association 
studies are being employed to identifying genomic regions and genes associated 
with semen traits in bulls (Hering et al. 2014a, 2014b), boars (Diniz et al. 2014), and 
stallions (Gottschalk et  al. 2016). Despite the genetic complexity of most sperm 
traits, SNP markers for poor semen quality have great potential for marker-assisted 
selection in early life and thus will be of economic value.

3.3.4  Prognosis of Fertility

Despite all the opportunities ahead provided by advanced cellular and genetic semen 
analysis, any expectation to improve prediction of fertility should remain realistic. 
Most analyses do not take into account the highly variable interaction of spermato-
zoa with cells and fluids in the female reproductive tract that are critical for sperm 
selection, survival, capacitation, and the acrosome reaction (reviewed by Amann 
et al. 2018), thus rendering assessment of male fertility as imprecise. Recently devel-
oped standardizable bioassays, such as sperm migration in microfluidic devices 
(Suarez and Wu 2016) and complex 3D cultures of female genital tissue (Ferraz et al. 
2017; Xiao et  al. 2017), have implications for novel sperm diagnosis, at least at 
research level. Moreover, herd fertility management, particularly the timing of 
insemination relative to ovulation, has a predominant influence on the AI results, 
whereas the influence of semen quality often is overestimated. As an example, a 
long-term study analyzing records from 165,000 inseminated sows in 350 farms with 
semen doses from 7429 boars revealed that less than 7% of the total variation in far-
rowing rate and litter size was boar and semen related (Broekhuijse et  al. 2012). 
However, since the impact of a subfertile male on herd fertility may be higher, the 
primary goal of every semen evaluation is to identify males with a reduced fertility 
potential. In production animals, such selection must consider the heterogeneity of 
sperm in a given semen sample and the number of sperm in the AI dose. Some, but 
not all, sperm defects may be compensated by higher sperm numbers (Saacke 2000), 
but AI efficiency may not be compromised, at least in livestock breeding.

3.4  Semen Preservation

3.4.1  Aims and Principles

Freshly ejaculated spermatozoa are activated by seminal plasma ingredients and 
gradually lose their fertilization capacity within the first hours after collection. 
Therefore, in a situation where breeding partners are not at the same location, 
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effective semen preservation is mandatory. The primary goal is to maintain the fer-
tilizing potential of spermatozoa over a long period of time in a pathogen-free 
milieu. In addition, efficiency of male gamete use should be increased by dilution 
with semen extenders and producing multiple insemination doses.

The principle features of semen preservation are:
 – Nutrition and protection of spermatozoa: energy substrates, buffers, osmolytes, 

membrane protectants (e.g., antioxidants), cryoprotectants in semen extenders.
 – Concentration of spermatozoa and removal of seminal plasma (freezing only).
 – Microbial control: antibiotics in semen extenders, according to national legisla-

tive standards, serve as a second line of defense against bacteria causing 
decreased fertility or pregnancy loss. The first defense is always periodic, routine 
health evaluations of the stud males.

 – Portioning spermatozoa into AI doses and mechanical protection: filling in plas-
tic semen tubes or bags (5–100 ml) for liquid storage or in plastic straws (0.25 or 
0.5 ml) for frozen storage.

 – Prevention of cold shock: controlled cooling regime to storage temperature.
 – Immobilization and reduction of sperm metabolism at low storage temperatures, 

i.e., liquid semen at 16 °C (boar) or 5 °C (most other species), frozen semen at 
−196 °C in liquid nitrogen.

The number of sperm per semen dose differs between species and depends on the 
type of preservation method (liquid/frozen); see Table 3.1.

3.4.2  Semen Cryopreservation

Cryopreservation is the preferred preservation method allowing indefinite storage of 
male gametes, international trade of superior genetics, and screening for pathogens 
prior to use. For biobanking, storage in the frozen state is indispensable. However, 
there are limitations specifically related to spermatozoa. The distinct composition 
and thermotropic phase behavior of membrane lipids render spermatozoa suscepti-
ble to cold shock, the extent of which varies between species. The vast majority of 
commercially marketed bull semen is cryopreserved, whereas less than 1% frozen 

Table 3.1 Sperm numbers per dose used for conventional artificial insemination in domestic ani-
mal species

Liquid-preserved semen Frozen-thawed semen
Bull 5 × 106 15 × 106

Boar 2 × 109 5 × 109

Stallion 200 × 106 progressive motile 800 × 106 progressive motile
Ram 50–100 × 106 150 × 106

Dog Total sperm-rich fraction 100–200 × 106 progressive motile
Camel 80–150 × 106 150–300 × 106
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semen is used in pig AI. Boar spermatozoa are especially sensitive to chilling dam-
age even at supra-zero temperature which has been attributed to their relatively high 
content of polyunsaturated fatty acids and a low sterol-to-phospholipid ratio (Parks 
and Lynch 1992). Differences in membrane lipid composition are associated with 
freezing-relevant biophysical properties such as the permeability for water and the 
cryoprotectant glycerol or osmotic tolerance limits (Holt 2000). Breed and male-to- 
male differences within species discriminate sires into “good,” “average,” and “poor 
freezers” pointing to a genetically determined variation as shown by amplified 
restriction fragment length polymorphism (AFLP) technology in Large White boars 
(Thurston et al. 2002). This could render sperm freezability as a promising candi-
date for marker-assisted selection. Even in those domestic animal species regarded 
as more cryotolerant, e.g., horse and dog, cryopreservation is lethal to a significant 
proportion (circa 30–50%) of spermatozoa directly after thawing. Moreover, there 
is evidence from various sperm function tests that the surviving sperm population 
experience sublethal damage resulting in abnormal sperm transport, altered sperm- 
oviduct interaction, and shortened survival in the female reproductive tract (Watson 
1995). Consequently, sperm injury must be compensated by typically doubling the 
number of sperm per AI dose compared to liquid-preserved semen and by intense AI 
management to optimize the time and technique of insemination. Damage to cells 
during freezing and thawing strongly depends on the cooling rate: slow cooling 
(about 5 °C/min) results in dehydration due to hypertonic conditions induced by 
extracellular ice formation, whereas rapid cooling (>100 °C/min) leads to the for-
mation of damaging intracellular ice crystals (Mazur 1963). Typically, sperm diluted 
in freezing extenders are slowly cooled from room temperature to 5 °C at a rate of 
approximately −0.1 °C to −0.3 °C/min, followed by freezing at a rate of −10 to 
−60 °C/min down to a temperature of −80° or −120 °C, after which samples are 
plunged into liquid nitrogen (−196 °C). Adaptation of cooling velocity to a medium 
rate is not sufficient to overcome freezing/thawing injury because of membrane 
phase transitions and resulting disturbance of cell homeostasis which begins already 
at supra-zero temperatures. The high degree of structural and functional variability 
in spermatozoa renders calculations of optimal cooling rates inaccurate. Even 
though knowledge of biophysical membrane properties of sperm from domestic 
animals has increased, to date cryopreservation protocols remained mostly empiri-
cal with only minor modifications over decades.

3.4.2.1 Cryoprotectants
Many efforts have been invested in development and testing of cryoprotectants. 
Sperm cryopreservation requires the use of cryoprotectants, preferentially those 
with minimal cell toxicity, high efficiency, and low risk of introducing contami-
nants. The action of cryoprotectants even increases the biological complexity of the 
cellular response to cooling and freezing. Still, the most widely used cryoprotec-
tants are glycerol and dimethyl sulfoxide (DMSO). These membrane-permeable 
agents exert their effect mainly by inhibition of intracellular ice formation. 
Cryoprotective actions vary for different agents and are influenced by 
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concentration, presence of other solutes, and the exposure temperature of the sper-
matozoa. Non-membrane-permeable cryoprotectants include osmotically active 
molecules such as disaccharides, e.g., sucrose and trehalose, and osmotically inac-
tive macromolecules, e.g., polyvinylpyrrolidone (PVP), hydroxyethyl starch, and 
dextran. These promote cell dehydration, lower the freezing point, and increase the 
viscosity of media, thus together inhibiting ice crystal formation. The mode of 
action of cryoprotectants for sperm preservation has been comprehensively reviewed 
(Holt and Penfold 2014; Sieme et al. 2016). Typically, freezing extenders for domes-
tic livestock species semen contain egg yolk for the protection of membranes as the 
most vulnerable sperm compartment. Because of its animal origin with the risk for 
transmission of diseases and its undefined mode of action, efforts continue to replace 
egg yolk by synthetic or plant lipoproteins, particularly soybean extract (Layek 
et  al. 2016). Addition of antioxidants to extenders is a further approach for the 
reduction of cryoinjury caused by the formation of reactive oxygen species (ROS) 
during cooling and thawing (reviewed by Amidi et  al. 2016). This strategy also 
applies for liquid-preserved semen stored under hypothermic conditions.

3.4.2.2  Semen Freezing in Rare and Endangered Species
Reviews of the actual state of the art in sperm cryopreservation, including alterna-
tive gonadal tissue preservation, from rare and endangered species have been 
recently published (Comizzoli and Holt 2014; Spindler et  al. 2014; Comizzoli 
2015). Biobanks are expanding, for example, currently 800,000 semen samples 
from 20,000 individuals of 14 different mammalian and nonmammalian species are 
stored as part of the National Animal Germplasm Program (2016) in the USA. Taxon- 
inherent seminal traits and sensitivity of spermatozoa to cryopreservation limit the 
adaptation of freezing protocols from related domestic species. Despite the absence 
of specific membrane biophysical data, slightly modified standard freezing proce-
dures with glycerol as the cryoprotectant yield acceptable post-thaw results in many 
different species. In exotic species, however, successful AI with frozen semen has 
only rarely been reported, especially due to the lack of knowledge of the corre-
sponding female reproductive physiology.

3.4.2.3  Alternative Freezing Strategies

 Directional Freezing
Directional freezing techniques shall reduce cryoinjury by preventing uncontrolled 
ice nucleation. This is accomplished by a multi-thermal gradient device consisting 
of one warm (+5 °C) and one cold (−50 °C) block with a gap in between to create a 
temperature gradient. Straws containing semen are moved with precise velocity 
from the warm to the cold block and then transferred to an even cooler collection 
chamber (−100 °C), thus avoiding the effect of “supercooling,” a process which 
would damage the spermatozoa due to sudden and fast formation of ice crystals. 
This technique can now be applied to larger volumes (up to 12 ml) which has been 
successfully used in domestic animals and wildlife species as well (Arav and 
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Saragusty 2016). Use of directional frozen semen led to first reported pregnancies 
after AI with frozen-thawed semen in rhinoceros (Hermes et al. 2009) and elephants 
(Hildebrandt et  al. 2012). More in vitro and in vivo trials and comparisons with 
conventional freezing could explore the full potential for the use in AI practice.

 Vitrification
Ultra-rapid freezing (2000 °C/min) by direct exposure of extended semen samples 
(with or without cryoprotectants) to liquid nitrogen was successfully applied with 
human sperm and that from other species. Using this “vitrification” technique, sam-
ples instantly reach a glasslike state without formation of deleterious ice crystals. 
Progress has been made toward an increase of sample volume (currently up to 
0.5 ml) and protection against contamination by liquid nitrogen (Isachenko et al. 
2005, 2011). Ice crystal formation must be avoided by careful temperature control 
during rewarming of the sample in the devitrification process. Because of its relative 
simplicity, low cost, and “field-friendliness”, vitrification is of future interest for 
preservation of semen from endangered or wild species. Details of this and other 
alternative freezing protocols can be found in the handbook Cryopreservation and 
Freeze- Drying Protocols (Wolkers and Oldenhof 2015).

 Freeze-Drying
Sperm freeze-drying would allow easy and low-cost semen storage at supra-zero 
temperature (4 °C–21 °C) without the need for liquid nitrogen. This method involves 
a multistep process including primary and secondary drying and two phase transi-
tions to arrive at completely dried samples. It basically follows the principles of 
anhydrobiosis occurring in nature. To date, freeze-drying is deleterious to most 
sperm components including DNA, thus precluding its use for AI or IVF (Keskintepe 
and Eroglu 2015; Gil et al. 2014). However, despite DNA fragmentations, freeze- 
dried sperm can be successfully used for intracytoplasmic sperm injection (ICSI; 
Wakayama and Yanagimachi 1998) and therefore is an option for germplasm 
banking.

3.4.3  Liquid Semen Preservation

Preservation of semen in the liquid state, i.e., at temperatures above 0 °C, is preferred 
in species with cold-shock-sensitive sperm (e.g., porcine), in males with poor semen 
quality but high genetic value, or in sires with the best genetics to extend the number 
of insemination doses. It also may be beneficial for sperm stressed by sex- sorting 
(Xu 2014). The main advantages of liquid preservation are (1) low cost, (2) avoid-
ance of chilling injury thus preserving higher sperm quality, and (3) low carbon foot-
print. Sperm numbers reaching the site of fertilization and longevity of the oviductal 
sperm population are higher, making AI management more flexible compared to 
cryopreserved sperm. In practice, AI with lower numbers of liquid- preserved sper-
matozoa often results in higher fertility results. The main drawbacks of liquid semen 
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preservation are the limited life span in vitro (typically a few days) and the higher 
risk of bacterial growth, at least if the semen is stored at temperatures above 4 °C. In 
most domestic animal species (bovine, equine, canine), spermatozoa are chilled to 
temperatures between 4 and 10 °C for the purpose of restricting the metabolic rate 
during storage, therefore reducing the depletion of ATP and the production of detri-
mental by-products, e.g., ROS.  Similar to cryopreserved semen, animal-derived 
compounds, e.g., milk and egg yolk, are incorporated into most species-specific 
extenders to protect sperm membranes from chilling injury. Storage at room tem-
perature would circumvent the need for specific membrane stabilizers and increase 
the economic use of an ejaculate due to a higher sperm quality; however this has been 
demonstrated to limit the fertile life span to approximately 12 h in stallion sperm. In 
this case, the major concern is that the ongoing oxidative phosphorylation production 
of significant quantities of ROS results in compromised sperm function (Gibb and 
Aitken 2016).

Several antioxidants and membrane stabilizers such as synthetic surfactants or 
exogenous lipids presented to the plasma membranes in microvesicles or pre-
loaded cyclodextrins have been studied to date. These may not “over-stabilize” 
surface membranes, thereby maintaining an active, well-balanced oxidative sys-
tem, which is essential for capacitation (Leahy and Gadella 2011). In boars, liquid 
semen is traditionally stored between 16 and 18 °C, thus taking into account the 
critical lower-limit temperature of 15 °C for irreversible loss of membrane integ-
rity and function. Effective long-term extenders (boar semen) allow storage up to 
7 days.

In addition, the risk of generating and spreading multiresistant bacteria by the 
use of critically important antibiotics in boar semen extenders came recently into 
focus. This is particularly crucial in pigs because of the comparatively large volume 
of the insemination doses (60–100 ml) used worldwide in sow herds. The develop-
ment of alternative antimicrobial approaches in pig AI includes rigorous sanitary 
measures during semen processing (see Fig. 3.3), the search for substitutes for con-
ventional antibiotics, and the development of sperm quality-compatible concepts 
for hypothermic storage below 10 °C (Schulze et al. 2015, 2016).

In domestic camelids, semen is mostly stored at 4 °C for a maximum of 48 h in 
ruminant semen extenders. To date, cryopreservation success is poor in this species, 
presumably due to the high viscosity of the ejaculate, the low ejaculate volume, and 
the low sperm concentration (Skidmore et al. 2013; Tibary et al. 2014). Even though 
liquid semen preservation generally is less harmful to sperm function compared to 
cryopreservation, sperm handling may alter the sperm surface by dilution effects 
and shearing forces that may cause the removal of protective extracellular matrix 
components originating from the seminal plasma, e.g., decapacitating factors 
(Leahy and Gadella 2011). Excessive dilution may therefore decrease fertilization 
rates, albeit absolute sperm number in the insemination dose is sufficiently high. 
Moreover, it must be considered that lipid phase transitions in sperm of many mam-
malian species occur in a temperature range between 30 °C and 10 °C causing leak-
age of solutes across membranes (Drobnis et  al. 1993). To prevent cold shock 
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damage, isothermic dilution and slow cooling to the desired storage temperature are 
crucial.

3.5  Insemination Management

3.5.1  Timing of Insemination

The optimal timing of insemination relative to ovulation is crucial for the success of 
AI, especially if semen of lower quality is used. Noteworthy, if insemination takes 
place in a narrow time window of 4 h prior to ovulation, fertility results using cryo-
preserved and liquid-stored boar semen do not differ (Waberski et al. 1994), even 
though boar spermatozoa are regarded as particularly sensitive to cooling stress. 
Species-specific optimal AI timing is illustrated in Fig. 3.4. In most spontaneous- 
ovulating domestic species, e.g., horse, pig, sheep, and goat, insemination shortly 
before ovulation will yield the highest pregnancy results, since the life span of sper-
matozoa is limited to 12 h with frozen semen and between 12 and 36 h (species 
dependent) with liquid-stored semen. Exceptions are some canids, where ovulation 
of primary oocytes of domestic dogs and farmed foxes requires a postovulatory 
maturation period between 2 and 3 days before they are capable of being fertilized 
(Thomassen and Farstad 2009). Additionally, oocytes and nonfrozen spermatozoa 
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Fig. 3.3 The workflow and nine hygienic critical control points in semen processing. Yellow: 
Highest risk of bacterial contamination as assessed in two consecutive audits in 24 boar AI centers. 
4, extender; 5, inner face of dilution tank lids; 6, semen dyes. Modified from Schulze et al. (2015)
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of these species maintain fertilizing capacity for several days allowing a more flex-
ible, postovulatory AI timing. In most other mammalian species, postovulatory 
insemination usually has low success rates due to rapid aging of oocytes within the 
first 4–8 h after ovulation associated with a loss of fertilization capacity or early 
embryonic death (Hunter 2003). In addition to the senescence of gametes, species- 
specific differences in the duration of sperm transport to the oviductal sperm reser-
voir may be important for optimum AI timing. In cows, sustained functional sperm 
transport to the site of fertilization in the oviduct requires a minimum of 6 h follow-
ing insemination (Hunter and Wilmut 1983). In addition, high pregnancy rates in 
cows have been recognized as a compromise between early insemination, resulting 
in low fertilization rates (due to sperm aging) but good embryo quality, and late 
insemination characterized by high fertilization rates but low embryo quality due to 
reduced selection pressure of sperm present only a short time in the oviductal reser-
voir (Saacke et al. 2000).

Timing of insemination may be even more challenging in induced (reflex) ovu-
lating species, such as felids and camelids. In these species, neural signals from 
copulatory stimuli trigger hypothalamic secretion of gonadotropin-releasing hor-
mone (GnRH) as the inducer for an endocrine and paracrine cascade leading to 
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Fig. 3.4 Illustration of typical estrus duration, time of ovulation (typed in red), and optimal 
insemination time in domestic animal species with spontaneous ovulation. Dotted lines in bars 
indicate variation in estrus duration. Timing of AI must be adapted accordingly
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ovulation. Interestingly, in camelids and in spontaneous ovulators, including cattle, 
horse, and pig, a highly conserved ovulation-inducing factor (OIF) was found in 
seminal plasma. In Bactrian camels, llamas, and alpacas, OIF triggers ovulation by 
release of pituitary LH (for review see Adams and Ratto 2013). Recently, it was 
demonstrated that llamas can be induced to ovulate by “insemination” of seminal 
plasma in the absence of copulation and that copulation alone cannot induce ovula-
tion in the absence of seminal plasma (Berland et al. 2016), whereas the role of OIF 
in spontaneous ovulators remains to be elucidated. This brings the concept of 
“facultative- induced ovulators” proposed by Jöchle (1975) into new light. The por-
cine species provides an example, where seminal plasma was shown to advance 
spontaneous ovulation by a locally active mechanism (Waberski et al. 1995). Given 
the complexity of physiological processes necessary for ensuring the fusion of gam-
etes in a state of full fertilizing competence and the limited knowledge on regulation 
of female reproduction by seminal fluid, future research is necessary to incorporate 
such knowledge into improved AI strategies.

3.5.1.1  Estrus Detection and Ovulation
In spontaneously cycling animals, detection of estrus is crucial for proper timing of 
AI because in most species ovulation occurs at a relatively fixed time point during 
or after estrus. Estrus, also known as “positive standing reflex,” is defined as the 
period where the female tolerates mounting of the male. In modern farming and in 
wild life, mounting activity is often difficult to observe. Indirect measures are there-
fore used as signs for the approaching estrus, e.g., edema and hyperemia of the 
vulva, vaginal mucus, restlessness, and other changes of behavior. Manual provoca-
tion of the standing reflex by massage of the lumbar-sacral region in cows or by the 
“back pressure test” in sows is helpful to identifying females in estrus. Exposure of 
the female to a male teaser is important because this stimulates the onset of estrus 
and is essential for early and timely estrus detection, especially in nulliparous 
females. Insufficient stimuli during estrus detection leads to apparent shorter estrus 
length and hence inaccurate prediction of ovulation time (Langendijk et al. 2000).

Since the degree of estrus expression has low heritability and varies individually 
between females and even within female from one estrus period to the other (Roelofs 
et al. 2010), a careful estrus detection in each cycle is crucial. Health status and 
environmental conditions are further factors influencing estrus behavior. The inter-
val and intensity of estrus detection are of utmost importance for reliable and early 
estrus detection. Generally, monitoring for estrus activity is recommended twice 
daily at an interval of 8–12 h.

Continuous monitoring for estrus behavioral symptoms clearly would be advan-
tageous. A battery of electronic monitoring systems is commercially available, 
especially for use in large dairy cow farms, including radiotelemetric mount sensors 
attached to the lumbar-sacral region of the cows which record mounting activity and 
frequency by a herd mate, telemetric pedometers strapped to the cow’s leg, or col-
lars with digital signal processing chips recording physical activity, different modes 
to measure estrus-associated increased body temperature, electronic “noses” to 
identify pheromonal odor in vaginal mucus, and online progesterone monitoring 
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systems based on applying a milk sample to an electrochemical biosensor and read-
ing the electrical response (reviewed by Fricke et al. 2014; Mottram 2016). Precise 
prediction of ovulation time is as yet not achievable, but implementation of these 
systems in AI programs may increase estrus detection rates in dairy farms. Without 
doubt, the most reliable tool to estimate ovulation time is manual palpation and 
ultrasound examination of ovaries to determine size, shape, and the maturity of the 
Graafian follicles. These methods are also routinely applied in mares; however, they 
are not practical in most other species.

In wild and exotic species, information of the female cycle has primarily been 
derived from noninvasive monitoring of estrogen and progestagen metabolites from 
fecal samples. Comparative studies in related wild and domestic species have 
revealed metabolic and endocrine differences affecting ovarian activity and estrus 
behavior. Moreover, captivity may alter reproductive physiology of wild populations, 
including seasonality of estrus behavior as demonstrated in cheetahs and the maned 
wolf (Comizzoli et al. 2009). Due to a variety of erroneous assumptions, the simple 
technology transfer of AI programs from domestic to wild species often has led to 
failure of breeding programs (Durrant 2009). Most wild animals, e.g., wild felids, in 
ex situ populations do not reliably exhibit overt signs of estrus, and behavioral indi-
ces of sexual receptivity are inconsistent or too difficult (or dangerous) to identify. As 
a result, the most effective means for timing of AI in these and rare species is to 
stimulate ovarian activity using exogenous gonadotropins (Howard and Wildt 2009).

3.5.1.2  Induction of Ovulation for Fixed-time Insemination
As an alternative to the time-consuming and often inaccurate estrus detection, 
insemination can be timed after hormonal treatment to synchronize follicular 
growth, corpus luteum regression, and ovulation. With increasing herd sizes and 
advanced knowledge of ovarian physiology, fixed-time artificial insemination 
(FTAI) programs have been introduced in dairy cows since the late 1990s. In beef 
cattle, FTAI can successfully increase the AI rate, which is currently less than 10% 
in the USA.  Numerous reports describe treatment protocols, influencing factors, 
and outcome from FTAI in dairy and beef cattle (for recent reviews see Bisinotto 
et al. 2014; Bó et al. 2016; Colazo and Mapletoft 2014; Wiltbank and Pursley 2014). 
In countries where estradiol is banned for treatment of livestock (in North America, 
Europe, New Zealand), modified GnRH-based protocols published by Pursley et al. 
(1995) are used. GnRH injected at a random stage of the cycle promotes ovulation 
of the dominant follicle and induces a new follicular wave. Injections of PGF2α 
7 days later cause regression of all corpora lutea. Forty-eight hours later, cows are 
given a second injection of GnRH to induce ovulation of the new dominant follicle. 
Insemination is then performed 24 h later irrespective of the presence of estrous 
signs. Modifications of this protocol, known as “Ovsynch,” including a second 
injection of PGF2α and intravaginal progesterone application through controlled 
internal drug release (CIDR) inserts, have been adopted. In the USA, research proj-
ects for optimizing FTAI protocols in beef cattle are being reinforced by the Beef 
Reproduction Task Force, and annual updates of recommendations are published 
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(Johnson et al. 2011). Limitation to use FTAI programs remains their yet relatively 
poor accuracy to induce ovulation of competent oocytes and consumer’s acceptance 
of hormonal treatments in production animals. Ovsynch-based FTAI protocols are 
also applied to other domestic species, such as goats, sheep, water buffalo, and yaks 
(reviewed in Wiltbank and Pursley 2014).

Similarly, estrus synchronization protocols are commonly used in small rumi-
nant AI in order to decrease variation in onset of estrus or for fixed-time AI (reviewed 
by Romano 2013). In pigs, efficient fixed-timed AI protocols were developed and 
widely used in large sow units in former East Germany (Brüssow et al. 1996; Hühn 
et al. 1996). The goal was to synchronize all reproductive events so that periodic and 
group-wise insemination would allow the hygienically advantageous “all-in-all- 
out” system and would improve the work flow in the barn without the need for 
estrus detection. Key elements of these protocols were the synchronization of estrus 
by the use of the steroid progestin altrenogest in gilts, group weaning in sows, stim-
ulation of follicular development using equine chorionic gonadotropin (eCG), and 
induction of ovulation using human chorionic gonadotropin (hCG) or GnRH ana-
logues. At present, variations of FTAI protocols, including the vaginal administra-
tion of the GnRH agonist triptorelin (Stewart et al. 2010), are being investigated 
with the aim to reduce the number of inseminated sperm per cycle, thus allowing a 
wider use of boars of high genetic merit and a reduction of labor in sow farms (Knox 
2014; de Rensis and Kirkwood 2016). This would be possible by reducing the num-
ber of inseminations per cycle and by the use of lower sperm numbers per dose with 
a single AI performed close to ovulation. In domestic horses, timed-single AI is 
often desired in spontaneous cycles, especially if expensive frozen semen is used. 
However, in mares, as in other species, repeated injections of hCG may induce an 
immune response resulting in failure to induce ovulation (Roser et al. 1979; Swanson 
et  al. 1995). Alternatively, ovulation can be successfully induced with repeated 
injections of the GnRH analogue buserelin or using a short-term subcutaneous 
implant releasing the GnRH analogue deslorelin (Jöchle 1994; Squires et al. 1994; 
Hemberg et al. 2006).

In many wild and endangered species, the most consistent AI protocols still 
require induction and/or synchronization of ovulation using exogenous gonadotro-
pins due to the difficulty to detect estrus and unknown ovulation times. However, 
hormonal protocols used in related domestic species can be ineffective or cause 
ovarian hyperstimulation and abnormal oocyte/embryo development (Pukazhenthi 
and Wildt 2004). In Przewalski’s horses and felids, estrous cycles can be synchro-
nized and ovulatory follicles developed by administering altrenogest in combina-
tion with PGF2α, thus offering strategies for the use of AI in critically endangered 
species (Howard and Wildt 2009; Collins et  al. 2014). Encouraging results have 
been reported using eCG/hCG injections or GnRH agonists injected or implanted 
for the induction of ovulation in felids, canids, camelids, and other species (canids, 
Asa et al. 2006; Johnson et al. 2014; felids, Graham et al. 2006; Howard and Wildt 
2009). Exogenous hormonal induction of ovulation seems to be more successful in 
induced ovulating species, e.g., camel, most felids, and the maned wolf, because 
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ovulation normally would not occur in the absence of gonadotropins or gonadotropin- 
releasing hormones (Howard and Wildt 2009).

3.5.2 Insemination Techniques

3.5.2.1  Conventional Insemination
Successful insemination in most species relies on sperm deposition into the uterus, 
especially when using frozen semen. In comparison to fresh semen, frozen semen 
may show impaired sperm transport and a shorter sperm survival time in the female 
reproductive tract. Uterine semen deposition is relatively easy to perform in large 
females, where either the cervix can be positioned by manual transrectal guidance 
(cow, camel) or a transvaginal manual or instrumental insemination with visual 
ultrasound monitoring (mare) is possible. A flexible plastic pipette with an inserted 
straw of semen and a thin steel plunger is positioned in the cranial part of the cervix 
in order that the semen can then be released into the corpus uteri. In pigs, single-use 
plastic catheters with spiral tips are “screwed” into the cervix, and the semen is then 
slowly released from storage tubes or bags into the uterus, thus mimicking the natu-
ral mounting procedure. AI techniques are more challenging in species with com-
plex anatomical vaginae and/or cervices, e.g., caprine, elephants, and rhinoceros. 
The goat cervix can be penetrated and the inseminating dose deposited into the 
uterus in approximately 25%–60% of multiparous females. In ewes, intrauterine 
insemination by the transcervical approach requires special restraint systems and 
insemination devices with a bent tip (reviewed in Cseh et al. 2012; Romano 2013). 
AI in elephants with frozen semen has been successful with the guidance of custom- 
made insemination catheters by endoscopy and ultrasonography to the distal vagina 
at the cervical os (Hildebrandt et al. 2012). Similarly, transcervical AI in domestic 
dogs and cats can be performed using vaginal endoscopy (Romagnoli and Lopate 
2014; Zambelli et al. 2015) and is especially recommended for frozen semen.

3.5.2.2  Laparoscopic Insemination
Laparoscopic artificial insemination through the abdominal wall allows semen to be 
placed directly into the lumen of the uterine horns close to the uterotubal junction, 
thus overcoming the hindered sperm transport through tortuous folds and crypts, 
semen backflow, and sperm phagocytosis. This technique became routine in com-
mercial sheep operations using frozen semen, whereas effectivity (safety and suc-
cess) in other species is still under debate (Vazquez et al. 2008). When using frozen 
sex-sorted sperm or when only small numbers of spermatozoa are available, laparo-
scopic AI either into the tip of the uterine horns or into the ampulla of the oviduct is 
an option, for example, in pigs (del Olmo et al. 2014). After transcervical or even 
vaginal insemination, offspring have been reported in programs aimed at the conser-
vation of wildlife species, but in most cases laparoscopic AI is more promising. As 
an example, laparoscopic intrauterine artificial insemination has been successfully 
used to enhance the dissemination of founder descendants in wild carnivores where 
male offspring from wild-caught individuals were underrepresented (Comizzoli 
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et al. 2009). However, in addition to the general risks of this invasive approach, it 
must be considered that anesthesia associated with laparoscopy might affect ovula-
tion, sperm transport, and subsequent establishment of pregnancy, as reported in 
felids (Howard and Wildt 2009).

3.5.2.3  Low-Dose Insemination
In the last decade, different insemination techniques, which permit the use of lower 
sperm numbers, have evolved in several species, primarily livestock (c.f. cow, 
López-Gatius 2000; horse, Samper and Plough 2010; pig, Vazquez et  al. 2008; 
Bortolozzo et al. 2015; small ruminants, de Graaf et al. 2007; camel, Skidmore et al. 
2013). Low-dose insemination is preferred for several reasons: (1) the emerging use 
of sex-sorted sperm in various species due to the to-date limited sorting efficiency 
and the harvest of sperm with poorer quality, (2) the increased efficiency of the use 
of males with the consequent reduction of fixed costs and reduction of the female 
population (pig, Gonzalez-Peña et al. 2014), (3) the acceleration of genetic progress 
by frequent use of higher indexing sires (pig, Knox 2016), (4) the increase in the 
availability of semen from males in high demand (horse, Samper and Plough 2010), 
(5) the use of low-quality semen from genetically valuable males, or (6) the use of 
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CAI: Cervical AI (conventional; routine use)

        1.5-3 x109sperm; 70 –100 ml dose volume

PCAI: Post cervical AI (routine use)

          1 x109sperm; 40 ml dose volume

DIU: Deep intrauterine AI

        15 x107sperm; 10 ml dose volume

UTJ : Surgical semen deposition at the utero-
          tubal junction

          1 x107sperm; 0.5 ml dose volume

Fig. 3.5 (a) Schematic drawing of the porcine female genital tract with different sites of semen 
deposition. Insemination closer to site of fertilization (oviduct) results in a gradual decrease of 
minimum sperm number and volume of semen dose required for insemination success. Semen 
deposition deeply intrauterine or at the uterotubal junction allows the use of sex-sorted sperm but 
is not yet common practice in pigs. (b) Insemination catheter used for postcervical insemination 
(PCI) in sows. It consists of an outer catheter whose foam tip gets introduced into the cervix. This 
location corresponds to traditional cervical insemination (CAI). For PCI a second inner catheter is 
inserted and moved approximately 10 cm toward the uterine body
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epididymal spermatozoa, usually only available in limited numbers after a terminal 
semen collection. Insemination of sperm in low numbers requires semen deposition 
close to the site of fertilization at an optimal time relative to ovulation. In cattle, 
horses, and camels, however, nonsurgical techniques are performed by rectally 
guided deep uterine horn insemination ipsilateral to the ovary with a preovulatory 
follicle. In cows and camels, limitations of these methods are the requirement for 
gentle palpation of the ovaries by well-trained inseminators to avoid diagnostic 
errors and manual induction of premature ovulation. Deep insemination in mares 
has been extended to hysteroscopic AI using a long [approximately 1.5 m] flexible 
endoscope which is inserted vaginally and rectally guided through the uterine horn 
to the oviductal papilla. A small volume of semen is then slowly deposited onto the 
papilla through delivery systems introduced in the working channel of the endo-
scope (Morris et al. 2000). In sows after their first parity, postcervical AI has become 
routine in some countries allowing a threefold reduction of sperm numbers com-
pared to conventional AI (Fig. 3.5a). A double catheter system is used where the 
inner catheter is gently pushed forward toward the uterine body (Fig. 3.5b). Deep 
intrauterine insemination is challenging in this species because of the long (about 
2 m) convoluted uterine horns and the impossibility of rectal guidance but can be 
achieved using a specially designed flexible catheter (Martinez et al. 2002). This 
allows a 20–60-fold reduction in the number of spermatozoa inseminated but is 
inconvenient for field use. Insemination of very low doses of semen to date would 
be necessary for the use of sex-sorted spermatozoa in pigs but requires laparoscopic 
insemination or alternative assisted reproductive techniques as discussed elsewhere 
in this book.

 Conclusion
Artificial insemination being the most traditional and widest used biotechnology 
in animal reproduction currently evolves with new trends in multidisciplinary 
fields, including basic research on reproductive physiology, computational 
power, and cytometric engineering. Powered by emerging knowledge on pro-
teomics and genomics and yet available technology to modify genetic codes, 
new goals appear to be achievable. Overall, artificial insemination targets to 
increase the efficient use of germplasm of high genetic males and to provide 
strategies for long-term survival of non-domestic and endangered species. New 
developments in technology must be sustainable and compatible with animal 
welfare, and, at least in production animals, cost-effective for AI industry and 
farmers.
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Abstract
The Food and Agriculture Organization of the United Nations has recognised 
that the production of pre-sexed livestock by sperm or embryo sexing as a useful 
breeding tool to increase production efficiency, especially for traits that are sex-
related. In this chapter, we briefly explain sex determination in mammals, review 
approaches to identifying X and Y chromosome-bearing sperm and their practi-
cal implications for semen handling and artificial insemination (AI) and compare 
their importance and success in the main farm animal species. The problems 
associated with current technology for sperm sexing, as reflected in the damage 
caused to mammalian sperm are then considered, followed by an assessment of 
the potential for replacing this technology by other methods.

In mammals, the most efficient method to bias sex ratios in offspring is to 
separate X and Y chromosome-bearing sperm by flow cytometry before insemi-
nation. Numerous other techniques purporting to alter the sex ratio have been 
proposed or discussed. None of these were able to produce significant separation 
of fertile X and/or Y sperm populations or were not repeatable. Only quantitative 
methods, which differentiate between X and Y sperm on the basis of total DNA 
and then apply flow cytometric sorting, have been able to separate the two sperm 
populations with high accuracy. Sperm are labelled with a DNA fluorescent dye. 
After recognition and electric charging, droplets containing single sperm are 
deflected and pushed into a collection medium from which they are further pro-
cessed. This set-up allows the identification and selection of individual sperm 
into populations with sort purities above 90% of the desired characteristics.  
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A critical point is the orientation of sperm in front of a UV laser, requiring modi-
fications of a standard flow cytometer. A specially designed nozzle assembly 
hydrodynamically focusses the sperm-containing laminar core stream by means 
of a sheath fluid and the specific geometrics of the internal assembly parts.

Sperm sorting requires special liquid media. For example, a system based on 
TRIS extender has been developed for bull and ram semen. Besides TRIS and 
other ingredients, the medium contains antioxidant scavengers to combat reac-
tive oxygen species (ROS) and the Hoechst dye 33342. Porcine semen is handled 
in a similar way, except that the sample fluid is based on TRIS-HEPES. The 
sample fluid for stallion semen is generally based on skim milk, INRA 96 or 
Kenney’s modified Tyrode (KMT). Sorted samples are collected in tubes pre-
filled with collection medium. The composition of this medium is, in most cases, 
a TEST- yolk extender, supplemented with seminal plasma in order to decapaci-
tate the collected sperm.

In the animal industries, changing the sex ratio of offspring can increase 
genetic progress and productivity. Animal welfare can be improved, for example, 
by decreasing obstetric difficulties in cattle and minimising environmental 
impacts by eliminating the unwanted sex. Sexed sperm has been most widely 
applied in the dairy industry, and it is likely that this will continue, dependent on 
the market situation. For US dairy farmers, milk production and the sale of sur-
plus calves and cull cows are as important as the production of replacement heif-
ers on-farm. Outside the USA, at least in Europe and Australia, the demand for 
sexed sperm is potentially high for milk producers to optimise herd management. 
In these countries, the genetically superior cows will be bred with X chromosome- 
bearing sperm to produce genetically superior females with high milk yield and 
for (female) pregnant heifer export to other countries. Besides AI, embryo trans-
fer (ET) can be performed after insemination with sex-sorted sperm. The combi-
nation of sex-sorted sperm with in  vitro embryo production (IVEP) is 
advantageous, but much more difficult than ET, and depends on species, indi-
vidual semen donor and composition of media used for in  vitro maturation, 
in vitro fertilisation (IVF) and in vitro culture.

Commercialisation of sex-sorted ram sperm has, to date, been restricted by 
the dearth of commercial sorting facilities in Australia and New Zealand, 
although sheep are the only species in which sex-sorted frozen-thawed sperm 
have been shown to have comparable, if not superior, fertility to that of non- 
sorted frozen-thawed controls. Moreover, there has been little incentive to take 
up the technology due to low rates of adoption of genetic improvement pro-
grammes and/or artificial breeding technology.

In pigs, apart from economic benefits from faster growth rates, sex-sorted 
sperm would provide major welfare advantages through the elimination of surgi-
cal castration. However, the current method of individual sperm sorting is not 
efficient enough to satisfy the potential demands of the porcine AI industry, due 
to the high number of sperm required for each insemination. For special applica-
tions, such as building up nucleus herds or for research, sexed boar sperm can be 
utilised in combination with specially adapted insemination strategies. A signifi-
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cant reduction in the total sperm dose, maintaining fertility, can be achieved if 
porcine semen is deposited deep in the uterus in front of the utero-tubal junction 
or directly into the oviduct. Only very few sperm are required for IVF using 
in vivo or in vitro matured oocytes. Transferring both gametes into the oviduct at 
the same time (gamete intrafallopian transfer – GIFT) can be used as an alterna-
tive to IVF. Even fewer sperm are required for intracytoplasmic sperm injection 
(ICSI) than for all other IVF methods. However, to date, these methods require 
laparoscopy or laparotomy for insemination, embryo or gamete transfer, which 
are not practicable as alternatives to castration.

In horses the preferred gender depends on the breed and range of use. Stallion 
sperm have a low sorting index and their sortability varies, not only among stal-
lions but also among ejaculates. Additionally, the freezability of stallion sperm 
varies widely. Insemination with sex-sorted sperm has to be performed by hys-
teroscopy deep into the uterine horn, limiting the technology to high-value 
animals.

The sex-sorting process can cause sperm damage. The main sources of dam-
age are incubation with the fluorescent stain and exposure to the UV laser, 
mechanical forces and electrical charge.

Future sorting methods may avoid the need to identify quantitative differences 
between X and Y chromosome-bearing sperm. This would require a specific 
marker related to only one sex. A promising system is based on gold nanoparti-
cles, which can be functionalised with DNA probes. After internalisation of the 
probe into the sperm head, the Y chromosome-bearing sperm can be identified 
due to their strong plasmon resonance, which is more stable than fluorescent dyes. 
Non-invasive coupling of a specific DNA probe with the intact DNA double 
strand by triplex binding and accumulation of nanoparticles has been achieved, 
but to date internalisation of the gold nanoparticles requires further research. 
Another promising new method promotes the naturally occurring genomic varia-
tions by gene editing. It is not a question of if, only when these methods will be 
ready for the market and replace the existing sexing techniques.

4.1  Introduction

Along with various reproductive strategies, different ways to balance sex ratios have 
evolved in the animal kingdom. In mammals, sex is determined by an almost equal 
distribution of two different sex chromosomes, named X and Y, located by meiotic 
segregation in the sperm head. Random chances of fertilising the X chromosome- 
bearing oocytes guarantee a balance of sexes in the mammalian population. 
However, there is some new evidence that the female may have an impact on the 
final sex of their offspring, by selectively modifying the oviductal environment in 
response to the presence of X or Y sperm (Alminana et al. 2014) or by epigenetic 
mechanisms adapting sex ratios to the needs of a population and to environmental 
challenges (Boklage 2005).

4 Technique and Application of Sex-Sorted Sperm in Domestic Farm Animals



68

Since ancient times, both scientists and mystics have tried to uncover the mecha-
nisms of sex determination and the reasons for balanced sex distributions. However, 
reliable scientific investigations awaited the invention of the light microscope, and 
it took several centuries to discover the biological and genetic mechanisms by which 
sperm contribute to sex determination. Many but not all details have been eluci-
dated, and scientists have begun to transfer this knowledge into technical methods 
that allow the sex ratio to be changed, often referred to as ‘sperm sexing’. Apart 
from avoiding specific sex-related diseases in humans, these techniques provide a 
powerful tool for managing farm animal breeding.

Future agricultural strategies will have to provide sufficient food for an increas-
ing world population. Food production must be at a price that is affordable by con-
sumers and profitable enough to provide farmers with a balanced income, to allow 
sufficient investment to fulfil farming as well as animal welfare regulations and to 
establish a sustainable food production chain. In this context, the Food and 
Agriculture Organization of the United Nations has recognised that the production 
of pre-sexed livestock by sperm or embryo sexing, when combined with other bio-
technologies, is a useful breeding tool to increase efficiency, especially for traits that 
are sex-related (De Cecco et al. 2010; Niemann et al. 2011). For example, as only 
cows and not bulls produce milk, sperm sexing has been promoted in dairy cattle, 
and X chromosome-bearing sperm are preferred for insemination (Seidel 2003b). 
Such techniques allow farmers to produce an optimal ratio of males and females in 
their production systems, which is of particular advantage when combined with a 
genomic selection programme.

In this chapter, we will briefly explain sex determination in mammals, review 
approaches to identifying X and Y chromosome-bearing sperm and their practical 
implications for semen handling and artificial insemination (AI) and compare their 
importance and success in the main farm animal species. The problems associated 
with current technology for sperm sexing, as reflected in the damage caused to 
mammalian sperm, will then be considered, followed by an assessment of the poten-
tial for replacing this technology by other methods.

4.2  Natural Sex Determination

In mammals, sex is determined at fertilisation by the sex chromosomes, X and 
Y. These are equally distributed among sperm, whereas the oocyte always carries an 
X chromosome. In the resulting zygote, the ‘XX chromosome’ combination deter-
mines a female and the ‘XY chromosome’ combination a male. The biological dif-
ferences between males and females are set genetically during embryo 
development.

After fertilisation with sperm carrying either sex chromosome, primordial germ 
cells (PGCs) develop and start migration within the first weeks of foetal develop-
ment across the hindgut to the genital ridge, an undefined gonad, which may dif-
ferentiate into either a testis or an ovary. PGCs originating from fertilisation with a 
Y chromosome-bearing sperm carry the gene region SRY (Jacobs and Ross 1966) 
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with a length of 35  KB (Sinclair et  al. 1990), coding for the protein ‘testis- 
determining factor’ (TDF). This protein is the primary signal to engrave the male 
phenotype on the genital ridge and initialise the development of Sertoli cells. Other 
Y chromosomal as well as autosomal genes participate in testicular development 
(Eggers and Sinclair 2012), and several transcription factors control the coordinated 
process to the mature gonad (Eggers et al. 2014), such as SOX 9 which has to be 
present downstream and is up-regulated by SRY for testicular development (Hanley 
et al. 2000; Mittwoch 2013). Thus, the factors influencing sex determination tend to 
be transcriptional regulators. The Y chromosome has several other pivotal functions 
in spermatogenesis, and the removal of these genes in the AZF regions causes dis-
tinct pathological testis phenotypes (Krauz and Casamonti 2017).

Sex differentiation, on the other hand, occurs once the gonad has developed and 
is induced by gonadal products. Secreted hormones and their receptors, therefore, 
largely establish phenotypic sex (Byskov 1986; Eggers and Sinclair 2012). The tes-
tis starts to produce testosterone and anti-Mullerian hormone (AMH) early in foetal 
development. Testosterone induces the masculine differentiation of the brain, the 
sex (Wolffian) duct and secondary sex characteristics, whereas AMH suppresses the 
development of the female sexual (Mullerian) duct system. Fertilisation with X 
chromosome-bearing sperm maintains the female characteristics of the sexual 
organs with ovaries, the formation of the Mullerian duct and the female secondary 
sex characteristics (Byskov 1986).

4.3  Techniques to Identify Sex-Related  
Characteristics of Sperm

In mammals, the most efficient way to bias sex ratios in offspring is to separate X 
and Y chromosome-bearing sperm before insemination. Over the past 90  years 
numerous techniques purporting to alter the sex ratio have been proposed or dis-
cussed (for reviews see Windsor et al. 1993; Klinc and Rath 2005). None of these 
methods were able to produce statistically significant separation of fertile X and/or 
Y sperm populations or were not repeatable (Pinkel et  al. 1985; Johnson 1988; 
Johnson and Clarke 1988; examples in Table 4.1). One of the more promising alter-
natives was the use of interferometry to detect volume differences between the 
heads of X and Y sperm, but the technique has not yet reached the level of efficiency 
that would allow practical application (van Munster 2002).

4.3.1  Sperm Sorting by Quantitative Flow Cytometry

Only quantitative methods, which differentiate between X and Y sperm on the basis 
of total DNA and then apply flow cytometric sorting, have been able to separate the 
two sperm populations with high accuracy. The X chromosome carries more DNA 
than the Y chromosome (Moruzzi 1979), whereas the autosomes of both kinds of 
sperm have identical DNA content. The DNA difference is widely species-specific 
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with some breed variation (Garner 2006). Gledhill et al. (1976) commenced the first 
experiments on flow cytometrical sperm analysis, but it was Fulwyler (1977) who 
developed a technical solution for asymmetric cells to orient them in front of a laser 
by hydrodynamic focussing.

In the procedure subsequently developed by Johnson and Pinkel (1986), sperm 
are labelled with a DNA fluorescent dye. After co-incubation with the dye, the cells 
are hydrodynamically focussed in a flow cytometer into a discontinuous droplet 
stream. The stream passes an interrogation point, where a UV laser beam is pro-
jected on it, illuminating the flat surface of the sperm head and exciting the fluores-
cent dye. The orthogonal set-up of two fluorescence detectors requires a precise 
orientation of the sperm head in front of the laser to resolve the small quantitative 
DNA difference of 2.3–7.5% (Garner 2006) between the X and Y chromosome- 
bearing sperm (Figs. 4.1 and 4.2). Before the droplets disrupt from the discontinu-
ous stream, the last hanging drop is charged according to the DNA content of the 
sperm it encloses. The droplets then pass an electrostatic field (3000 V) and are 
deflected according to their charge. The deflected or sorted cells are pushed into a 
collection medium from where they are distributed to further preservation steps 
(Johnson and Welch 1999). This set-up allows the identification and selection of 
individual sperm into populations with sort purities above 90% of the desired 
characteristics.

Table 4.1 Examples of physical methods proposed for identification and separation of sperm

Criterion Status References
Velocity Unproven Ericsson et al. (1973), Dmowski et al. (1979), 

Beernink and Ericsson (1982); Beal et al. (1984)
Density Unproven Bhattacharya (1962); Bhattacharya et al. (1966), 

Rohde et al. (1975), Ross et al. (1975), Schilling and 
Thormaehlen (1977), Shastry et al. (1977), Kaneko 
et al. (1983), Vidal et al. (1993), Pyrzak (1994), Wang 
et al. (1994a, b), Flaherty et al. (1997), Kobayashi 
et al. (2004), Koundouros and Verma (2012)

Electrical surface 
charge

Not 
reproducible

Sevinc (1968), Shirai et al. (1974), Shirai and Matsuda 
(1974), Shishito et al. (1975), Uwland and Willmes 
(1975), Engelmann et al. (1988), Blottner et al. 
(1994), Manger et al. (1997)

Immunologically 
relevant structures
Surface proteins

Not 
reproducible

Bennett and Boyse (1973), Erickson et al. (1981), 
Hancock et al. (1983), Pinkel et al. (1985), Ali et al. 
(1990), Hendriksen et al. (1993), Sills et al. (1998), 
Blecher et al. (1999)

Volume/
interferometry

Small 
differences not 
at practical 
stage

van Munster (2002)

Semen deposition 
site in the uterus

Unproven Zobel et al. (2011)

Interval 
insemination: 
ovulation

No effect Rorie (1999), Rorie et al. (1999), Roelofs et al. (2006)
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The technique described above requires numerous modifications to a standard 
flow cytometer. Detailed instrument modifications, protocols and technical improve-
ments to the sexing method have been well documented in various articles and 
reviews (Fulwyler 1977; Stovel et al. 1978; Dean et al. 1978; Pinkel et al. 1982; 

Fig. 4.1 The principle of a flow cytometer modified for sperm sorting. The UV laser-based system 
requires several modifications to optimise high-speed sperm sorting. The essential elements are the 
replacement of the usual forward scatter diode by a photo multiplier tube (PMT 0°) and its associ-
ated optical lens, a laser with beam shape optic optimally focussed on the flat surface side of the 
sperm head and a specially designed orientation nozzle assembly. (By courtesy of Roberto 
Mancini)

Fig. 4.2 The principle of sperm orientation within the core stream of a modified sperm sorter. The 
small quantitative difference in DNA content between X and Y chromosome-bearing sperm 
requires an orthogonal orientation relative to the laser beam. The orientation is accomplished by 
hydrodynamic focussing caused by the nozzle assembly design and the differential pressure of the 
core stream and the sheath fluid. The fluorescence signal of the small rim of the sperm head creates 
an optical breaking effect that is independent of the DNA content. Its recognition by the 90° PMT 
identifies the position relative to the laser beam. The DNA difference is measured as the emission 
signal of the excited fluorochromes Hoechst 33342 by the 0° PMT. The signals of the PMTs are 
digitised and presented as a dot plot on a computer screen. (By courtesy of Roberto Mancini)
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Garner et  al. 1983; Johnson and Pinkel 1986; Johnson et  al. 1987; Johnson and 
Clarke 1988; Johnson 1997; Rens et al. 1998; Johnson and Welch 1999; Rath et al. 
2009). These are not the main subjects of this chapter. However, an outline of the 
most important innovations that have allowed practical application in domestic farm 
animals, and associated problems, is pertinent.

A major step for economic production was the introduction of high-speed flow 
cytometers, which allowed the production of a sufficient number of sex-sorted 
sperm for practical application (Johnson and Welch 1999). Sharpe and Evans (2009) 
reported a maximum sort rate of 8000 cells/s with a high-speed sorter under ideal 
conditions. All sex-sorted sperm at the present time are produced regardless of spe-
cies with high-speed sorting instruments and protocols. The most important modifi-
cations and inventive steps to achieve high-speed sorting are as follows:

Fluorescence dye and UV laser: Correct labelling of the condensed sperm chro-
matin is a prerequisite to the accurate identification of the DNA size differences 
between X- and Y-bearing cells. Only very few fluorescent dyes are able to pass 
through the intact sperm membrane into the nucleus. Hoechst 33342 (bis- 
benzimide) has been shown to represent the DNA content of sperm precisely, with-
out affecting their integrity (Johnson et al. 1987; Garner 2006), as it binds to the 
AT-rich regions in the minor groove of the DNA helix (for review, see Rath and 
Johnson 2008). The dye is apparently not genotoxic, although it is known to be 
mutagenic and may affect embryo development. Moreover, the fate of the Hoechst 
dye, once transported by the sperm into the oocyte and thereby into the embryo and 
offspring, is little understood (Garner 2009). For excitation the dye requires con-
tinuous, or at least quasi-continuous, wave UV laser light above 100 mW. The laser 
beam has to illuminate each sperm with a specifically designed beam shape optic, 
which projects it into a vertical ellipse onto the flat side of the sperm head.

Sperm orientation: A specially designed nozzle assembly hydrodynamically 
focusses the sperm-containing laminar core stream by means of the sheath fluid and 
the asymmetric geometrics of the internal assembly parts (Johnson and Pinkel 
1986). This forces the flat side of the sperm head into an orthogonal position relative 
to the laser beam. In a first development, sperm orientation was generated by an 
assembly carrying a bevelled sample injection needle and an orientation nozzle tip 
that promoted the alignment of the cells in front of the laser (Rens et al. 1998). With 
this assembly inserted into a high-speed flow cytometer, sort rates of 12–15 million 
sperm per hour became a reality and were the prerequisite for commercial applica-
tion of the technology (Johnson and Welch 1999). While this so-called ‘HISON’ 
orientating nozzle had a double torsional elliptic shape (Rens et  al. 1998), most 
commercial sorters today work with a single torsion nozzle (Cytonozzle; XY, Inc., 
Fort Collins, CO, USA) a further refinement that provides better sperm orientation. 
Recently, an updated version of the original double torsional nozzle assembly was 
developed, with an improved internal geometry designed to optimise the efficiency 
of sperm orientation. In this assembly, the spatula-like shape and the double-phased 
edges of the injection tube now amplify the hydrodynamic focussing, rather than the 
ceramic nozzle tip (Rath et al. 2013).
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Replacement of the forward diode: In order to detect the light emitted from the 
Hoechst 33342 dye, the forward diode of the standard flow cytometer can be 
replaced by a sensitive fluorescence-detecting photomultiplier tube (PMT) (Dean 
et al. 1978; Stovel et al. 1978; Pinkel et al. 1982; Garner et al. 1983). Through a 
(50×) microscopic lens, the 0° PMT recognises the emitted light from the flat 
side of the labelled sperm head. The emission signal of dye is related to the total 
DNA content of the sperm head. If correctly oriented, the 0° PMT signal and the 
corresponding 90° PMT orientation signal display both sperm populations as 
distinct separated areas in a dot-plot presentation or as separated histograms 
(Fig. 4.3).

Sort purity and sorting parameters: Sort purity depends on many technical set-
 up parameters and adjustments of the sorter. Sort regions drawn on the dot-plot 
presentation, identifying specific cell populations, provide the command to send the 
related droplet charge to the stream (Johnson et al. 1989; Johnson 1991; Welch and 
Johnson 1999). The charge is transmitted to the discontinuous fluid stream at the 
time point when the droplet, with the corresponding sperm cell, detaches from the 
stream. Thereby, a free droplet is produced that carries the individually recognised 
sperm with a DNA-content-correlated electrical charge. This precise time point has 
to be set up as the so-called drop delay before sorting. The free droplet then passes 
an electrostatic field of around 3000 V and is deflected to either side depending on 
its charge. Sorted cells are pushed into a collection medium (Johnson and Welch 
1999) and then separation from the sheath fluid by centrifugation or continuous 
filtering.

Fig. 4.3 Dot plot presentation of the PMT signals. The dot plots (right dot plot zoomed) show the 
sperm emission signals from the sperm head rim (orientation, X axes) and the relative DNA content 
(Y axes). This information received from the two PMTs is used to draw overlaid sort regions (R2 
and R3), which determine the signal to send an electric charge to the last hanging droplet of the 
discontinuous fluid stream. After disintegration, the free-flowing charged droplets pass an electro-
static field, which deflects them to either side, or, if they have not been identified, they continue 
undeflected into the waste stream
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4.4  Semen Processing

4.4.1  Sample Preparation

After collection of the ejaculate and assessment of semen quality, aliquots of raw 
semen are adjusted to 50–100 million sperm/ml. For most farm animal species, 
specific extenders have been developed serving as ‘sample fluid’ for the incubation 
of sperm with the DNA dye. The sample fluid further provides the material for the 
core stream during sorting. Whereas some groups prefer a TALP-based medium for 
sorting and a TRIS-based cooling/freezing system for ruminant semen, it can be 
advantageous not to change the buffer system during the sorting/freezing process. 
Therefore, a system based on TRIS extender only has been developed for bull and 
ram semen (Sexcess® Klinc and Rath 2005). Besides TRIS and other ingredients, 
the medium contains antioxidant scavengers to combat reactive oxygen species 
(ROS) and 10–25 μl/ml of the Hoechst 33342 made of a stock solution with 5 mg/
ml dye. Semen and fluorescent dye are co-incubated for 30–90 min at 34 °C. Porcine 
semen is handled in a similar way, except that the sample fluid comprises TRIS-
HEPES- buffered extender (modified Androhep™: Johnson 1991; Waberski et  al. 
1994) and the incubation temperature is set to 30 °C. The sample fluid for stallion 
semen is generally based on skim milk, INRA 96 or Kenney’s modified Tyrode 
(KMT) (Heer 2007; Clulow et al. 2008, 2012).

In all cases, the sample fluid containing the labelled sperm is filtered after the 
incubation period through a 50 μm nylon filter into a 5 ml pressure tube (maximum 
diameter 14.9 mm). Food dye (FD#40) is added in order to identify those sperm 
with damaged membranes resulting from sorting. FD#40 consists of relatively large 
molecules, which only enter the heads of sperm with damaged membranes. The dye 
eliminates defective sperm from sorting because it bleaches the fluorescence signal 
of the DNA stain. The sample tube is placed into the sample holder, and the liquid 
is pushed into it under pressure (50 psi). The quality of sperm in the collected sam-
ple would benefit from lower pressure (Suh et al. 2005), but this would be in conflict 
with existing patents.

4.4.2  Post Sort Handling

Sorted samples are collected in tubes pre-filled with collection medium. The com-
position of this medium is, in most cases, TEST-yolk extender as described by 
Johnson et al. (1987), which benefits from the inclusion of 2% seminal plasma. The 
latter component stabilises the membranes of those sperm that have undergone 
capacitation-like changes during flow sorting.

Most of the volume of the collected sample originates from the sheath fluid, 
necessary to realise the hydrodynamic focussing of the sperm heads in the nozzle 
assembly. For ruminant semen, a TRIS-buffered salt solution is preferred, contain-
ing at least one additional energy source. Boar sperm are able to tolerate simple 
PBS, supplemented with at least one antioxidant, as a sheath fluid.
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After sorting about 8 ml of sample into each collection tube, they are centrifuged 
and the supernatant discarded. The remaining sperm pellet is extended with an 
appropriate, species-specific, medium for liquid preservation or freezing.

4.5  The Importance of Sexing Techniques  
in Different Farm Animals

In the animal industries, changing the sex ratio of offspring can promote faster 
genetic progress and higher productivity and support animal welfare, for example, 
by decreasing obstetric difficulties in cattle and minimising environmental impacts 
by eliminating the unwanted sex.

Several reviews have been published on the commercial use of sexed bovine 
sperm, especially in the USA (Amann 1999; Seidel 2003a, b; Garner 2006; Garner 
and Seidel 2008), but they are helpful guidelines for other countries too. Maxwell 
et al. (2004) reviewed the situation in other species; and specifically for pigs, there 
are reviews by Johnson et al. (2005) and Rath et al. (2015). Sex-sorted semen is in 
high demand, but the range of applications varies widely. This depends on species, 
products, production lines, economic interests, market requirements, breeding pro-
grammes, local specialities and other factors. While the current technique based on 
modified flow cytometry separates X and Y chromosome-bearing sperm with high 
accuracy, it is limited because each sperm cell has to be characterised and sorted 
individually. Therefore, its commercial utilisation differs significantly among spe-
cies because of different characteristics such as site of semen deposition, length of 
the oestrous cycle, demand for sperm numbers and the sortability and freezability of 
sperm.

4.5.1  Cattle

Johnson et al. (1989) performed the first trials that successfully produced offspring 
from sex-sorted rabbit sperm. The original generation of flow sorters was not very 
efficient, resulting in low output and purity of sorted sperm compared with their 
present-day counterparts. Consequently, it was necessary to utilise the sorted sperm 
for IVF and embryo transfer to produce the first calves (Cran et al. 1993, 1995). 
Later Seidel et  al. (1997), using a newly developed high-speed flow cytometer 
(MoFlo), obtained the first calves after AI of heifers with sorted liquid-stored sperm, 
and later with frozen sperm (Seidel et  al. 1999). High-speed flow cytometry has 
been applied most easily in the ruminant species (bovine, 2 million/AI, Seidel et al. 
1997; and ovine, 1–5 million sperm/AI, de Graaf et al. 2007c), especially as the 
sorting index (131) is more suitable for high-throughput sorting than in other spe-
cies (Garner 2006). By the year 2000, high-speed sorting had been commercially 
introduced in the UK. However, field data indicated that fertility was still highly 
variable and depended on bull effects. Such effects were not necessarily due to sort-
ing but may have been related to high dilution and reduced compensatory 
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mechanisms among sperm. This was especially the case in farms with moderate 
fertility, where limited quality of the sorted sperm became more apparent. Modified 
insemination protocols may help to improve pregnancy rates. Unilateral intrauterine 
horn inseminations in heifers with preovulatory follicles seemed to be advantageous 
under hot conditions (Chang et al. 2017), whereas Kurykin et al. (2016) found no 
differences in pregnancy rates after intra-cornual (44.9%) or conventional insemina-
tion (48.4%). Insemination closer to the expected ovulation yielded higher chances 
of pregnancy in Jersey cows (Bombardelli et al. 2016).

At the present time, due to decreasing production costs as a consequence of bet-
ter instrumentation and optimised maintenance of sperm quality, sexed sperm has 
become more widely applied in the dairy industry. It is likely that this will continue, 
dependent on the market situation. As long as the demand and price for heifers 
remain high, a profitable sale of sexed semen can be expected. However, if the 
prices for milk, heifers and cull cows decrease, feed costs increase and prices remain 
low for conventional semen, the demand for sexed semen may disappear.

For US dairy farmers, milk production and the sale of surplus calves and cull 
cows are important, whereas the sex of the calf is relatively unimportant, except for 
reduced possibilities of dystocia from male compared with female calves 
(Hohenboken 1999) and a slightly higher milk yield when cows have heavier (male) 
calves (Quesnel et al. 1995). More important is the production of replacement heif-
ers on-farm, which avoids the need for foreign animals to enter the herd and 
improves the genetic value of the herd by purchasing semen from highly selected 
bulls from the seed-stock industry. Genetic gain will be passed on to milk produc-
ers, as sexed semen helps to maximise the genetic merit of breeding stock by 
increasing the rate of selection and reducing the costs of genetic improvement 
(Hohenboken 1999).

In the past, genetic improvement programmes required heifers for test insemina-
tions. In modern genomic selection programmes, bulls already have a proven genetic 
status as calves or even at their embryonic stage. In consequence, the turnover of 
young bulls has increased significantly, requiring more specifically selected elite 
bull mothers which can be produced with X chromosome-bearing sperm, while Y 
sperm can be reserved for sire production, encouraged by the monthly published 
figures on breeding values. Sexed sperm are most efficiently used in the in vitro 
production of matured ‘OPU oocytes’, which have been characterised for high 
breeding value before embryo transfer or storage. Female embryos can be trans-
ferred to recipients for provision directly to milk producers, whereas the male 
embryos serve as a source of superior AI bulls.

Other than in the USA, where heifer replacement within the herd is one of the 
main reasons for using sexed sperm, at least in Europe and Australia, the demand for 
sexed sperm is potentially high in milk-producing farms to optimise herd manage-
ment. As female replacement is here not of such importance, the genetically supe-
rior cows will be bred with X chromosome-bearing sperm to produce genetically 
superior females with high milk yield and for (female) pregnant heifer export to 
other countries. The remaining females could be bred with Y sperm of a beef breed 
to optimise sales revenue, which is suboptimal if dairy breed bulls are fattened. 
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However, the demand is mainly influenced by the milk price rather than by the con-
sumption of milk. Ettema (2007) presented calculations for the dairy industry in 
Denmark as an example for the European market. He used a model, which included 
the price for heifers, replacement costs, price per beef calf, the price of sexed semen, 
conception rates with sexed semen, replacement rates, the sex ratio of the sperm and 
the incidence of dystocia and stillbirths. The main negative factors were lower fertil-
ity, high cost of equipment, personnel cost and investment in intellectual property. 
In consequence of Ettema’s analysis, a net return to assets from the use of sexed 
semen in a breeding programme would not be expected earlier than 3–4 years after 
implementation.

For intensive beef production, Seidel and Whittier (2015) proposed a programme 
for heifer fattening using sexed sperm, based on the principles described by Bourdon 
and Brinks (1987a, b, c). Without a sire, all AI is performed in this system with X 
sperm on heifers only. Female offspring are raised and inseminated again with X 
sperm, and after delivery the heifer offspring are finally fattened and culled. Because 
only young females exist on the farm, more beef is produced per feeding unit, less 
water is necessary and less CO2 and methane are produced. As no older animals 
exist, losses related to illness are minimised, and treatment costs are low. However, 
compared with a bull-fattening system, daily weight increases are lower, which has 
to be compensated for by running more heifers. According to Seidel and Whittier 
(2015), the heifer system is superior as no mating cows and bulls exist on the farm. 
Dystocia is more likely in heifers than adult cows, but as only female calves are 
born, the difficulties are negligible. The biggest disadvantage is that the system of 
heifer replacement is not completely self-maintaining. Presumably such systems for 
beef production are more likely to be adopted if milk prices fall below profitable 
margins and would be useful for farmers who wish to move from dairy production 
to fattening with limited investment.

Besides AI, embryo transfer (ET) can be performed after insemination with sex- 
sorted sperm, and the embryo donors may be hormonally stimulated to increase the 
number of offspring and hence selection differentials. Schenk et al. (2006) reported 
no difference in embryo production or quality after insemination with sex-sorted 
compared with unsorted sperm. The combination of sex-sorted sperm with in vitro 
embryo production (IVEP) is advantageous, but much more difficult than ET, and 
depends on aspects like species, individual semen donor and composition of media 
used for in vitro maturation, in vitro fertilisation (IVF) and in vitro culture. Moreover, 
factors such as origin of gametes, status of the sorting protocol and instrumentation 
as well as treatment and storage of gametes and embryos and the liquid or frozen 
status of the derived embryos, to name a few, have an impact on the resulting num-
ber of offspring. For in vitro blastocyst production, Inaba et  al. (2016) observed 
reduced competence of oocytes fertilised by X sperm, rather than any effect on 
sperm fertilising ability. However, the occurrence of this phenomenon varied among 
bulls. Accordingly, published data from IVEP with sexed sperm vary, and they are 
partly contradictory.

The number of sperm required for IVF of bovine oocytes differs depending on 
whether they have been subjected to sex sorting or not. Reasons for this include a 
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change in the propensity of the sperm membrane to undergo the acrosome reaction, 
resembling a partial ‘capacitation’ (Moce et al. 2006), and the elimination of DNA- 
damaged sperm during sex sorting. Thus, Lu and Seidel (2004) found that the hepa-
rin concentration in the medium had to be optimised for each bull and increasing 
sperm dose from 0.5 (1500) to 1.5 (4500) and 4.5 × 106 sperm per ml (13,500 sperm 
per oocyte) increased cleavage but not blastocyst rates. Barcelo-Fimbres and Seidel 
(2004) obtained the best IVF and embryo development rates using 1 × 106 sperm per 
ml (2667 sperm/oocyte). The resulting cleavage and blastocyst rates did not differ 
between X and Y chromosome-bearing sperm (Cran et al. 1993; Barcelo-Fimbres 
et al. 2011), whereas others have reported that male IVF embryos grow faster than 
their female equivalents (Xu et al. 1992).

Not all bovine ejaculates are suitable for sorting and subsequent IVEP. In some 
experiments, an unexplained decrease in blastocyst production has been reported with 
sorted sperm compared to controls (Lu et al. 1999), and Xu et al. (2006) could only 
use one third of the available bulls. From the latter samples, however, more than 33% 
of sexed IVF embryos developed into blastocysts and, after vitrification, 40% of recip-
ients became pregnant after ET. Similarly, the source of oocytes is important. Palma 
et al. (2008) identified structural changes of organelles like mitochondria, rough endo-
plasmic reticulum (ER) and the nuclear envelope after IVF with sex-sorted compared 
with unsorted sperm. This is in agreement with studies on the mRNA expression pat-
tern of the important developmental genes, glucose-3 transporter (Glut-3), glucose-
6-phosphate dehydrogenase (G6PD), X-inactive specific transcript (X-ist) and heat 
shock protein 70.1 (Hsp), in day 7 and 8 bovine IVP embryos produced with sexed 
sperm (Morton et al. 2007). Lopez et al. (2013) fertilised oocytes, derived from ovum 
pick-up, in vitro with sorted frozen-thawed sperm or with non-sorted frozen-thawed 
sperm from the same ejaculate. In this study, gamete co-incubation, either short 
(4–12 h) or long (18–24 h), had no effect on monospermy, pronuclear formation or 
syngamy. This contradicts earlier reports (Maxwell et  al. 2004; Rath et  al. 2009; 
Carvalho et al. 2010) and suggests that many of the improvements in sorting and post-
sort semen preservation, as well as oocyte handling, might have compensated for the 
former differences between sorted and unsorted sperm. These data are almost in 
agreement with those published by Trigal et al. (2012), except that they confirmed a 
bull-related effect as seen in earlier studies (Lu and Seidel 2004; Xu et  al. 2006). 
However, there were no differences in embryo survival after vitrification, nor in preg-
nancy rates, between sorted and unsorted semen. The bull effect on IVEP may be 
related to the capacitation status of sperm after sorting, requiring the heparin concen-
tration to be adjusted for the sperm of each bull in order to obtain the maximum num-
ber of competent embryos (Blondin et al. 2009).

4.5.2  Sheep

Commercialisation of sex-sorted ram sperm has, to date, been restricted by the 
dearth of commercial sorting facilities in those countries where the sheep popula-
tion is highest, namely, Australia and New Zealand. Moreover, there has been little 
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incentive to take up the technology due to low rates of adoption of genetic improve-
ment programmes and/or artificial breeding technology in some sectors of the 
industry. This is both surprising and disappointing, as sheep are the only species in 
which sex-sorted frozen-thawed sperm have been shown to have comparable, if not 
superior, fertility to that of non-sorted frozen-thawed controls. The use of very low 
numbers of sperm for laparoscopic insemination of sheep has resulted in the most 
efficient utilisation of sex-sorted sperm, with the highest levels of fertility, of any 
species, whether inseminated in superovulated ewes, at very low doses in non- 
superovulated ewes, or even when the semen has been frozen twice, both before and 
after sex sorting (reviewed by de Graaf et al. 2009).

The first lamb from sex-sorted spermatozoa was produced by ICSI with a fresh 
sperm (Catt 1996). Lambs were then produced after sex sorting and laparoscopic 
insemination using either 10 million non-frozen (Cran 1997) or 2–4 million frozen- 
thawed spermatozoa (Hollinshead et al. 2002). Two years later, offspring were pro-
duced by IVF of oocytes aspirated from hormone-stimulated prepubertal lambs 
(Morton et al. 2004). After modification of the sexed sperm treatment protocols, de 
Graaf et al. (2007b) were able to report superior fertility rates to non-sorted sperm 
when inseminated by laparoscopy (1 or 5 million sorted motile sperm). In another 
trial, it was shown for the first time for any species that ‘reverse sorting’ (sorting of 
previously frozen-thawed sperm) is capable of producing offspring of predicted sex 
following AI (de Graaf et al. 2006). The fertility of sex-sorted frozen-thawed ram 
sperm was shown, in a number of subsequent studies, to be equal to unsorted sperm 
when used for laparoscopic insemination or intrauterine insemination in superovu-
lated ewes and subsequent embryo transfer of morula and blastocysts (de Graaf 
et al. 2007a, 2009). Furthermore, IVF data showed that sex-sorted sperm elicit equal 
or greater cleavage and blastocyst rates than their non-sorted counterparts (de Graaf 
et al. 2009; Beilby et al. 2011).

It seems that sheep are an exception to the general rule that sex sorting reduces 
the fertility of mammalian sperm. They withstand the stress caused by different 
treatments such as incubation with the Hoechst dye, flow sorting and post-sort treat-
ments for long-term storage in liquid nitrogen, and they have been shown to possess 
characteristics predictive of longer fertilising lifespan in the female reproductive 
tract, compared with unsorted sperm (de Graaf et al. 2009). Presumably, besides 
physiological characteristics, it is likely that protection by liquid media has been 
optimised for this species.

4.5.3  Pigs

The first piglets were born from oviductal insemination with sexed sperm only 
2 years after the first offspring from sex-sorted rabbit sperm (Johnson 1991). Pig 
producers would benefit from the use of sexed sperm, either as a fresh or frozen 
semen product, to obtain more female piglets. As a commercial product, aside from 
the economic benefits from faster growth rates, there would be major welfare advan-
tages through the elimination of surgical castration. However, until now, sexed 
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sperm have not been commercially available. This is because the current method of 
individual sperm sorting is not efficient enough to satisfy the potential demands of 
the porcine AI industry, due to the high number of sperm required for each insemi-
nation. Additionally, unlike in the bovine industry, pig AI is based on liquid semen 
and has no existing infrastructure for the application of frozen semen on farm.

For special applications, such as building up nucleus herds or for research, sexed 
boar sperm can be utilised in combination with specially adapted insemination strat-
egies. During natural mating, the boar deposits the semen through the cranial part of 
the cervix and into the uterine body. Selection and binding of sperm occur to a large 
extent in the uterine horns, and much of the sperm and semen volume is ejected by 
retrograde flow through the vagina (Viring and Einarsson 1981; Steverink et  al. 
1997, 1998; Matthijs et al. 2000, 2003). In conventional AI, the semen is deposited 
at the same location as at natural mating by the boar, and it is subjected to the same 
selection processes during transport to the oviduct. The normal insemination dose 
varies, therefore, between 1.5 and 3 billion sperm for liquid-stored semen and 5 bil-
lion for frozen-thawed semen. If this were considered in the context of sex sorting, 
it would theoretically take at least half a day, and require eight sorting machines, to 
produce one dose of liquid sex-sorted sperm. An important logistical consideration 
is the storage time of semen before and after sorting. Alkmin et al. (2016) proposed 
a method for storage of semen for up to 24 h before sorting, which would allow its 
transport to a central sorting unit. There, sorted sperm could be encapsulated in 
barium alginate capsules, allowing controlled release of sperm into the female geni-
tal tract after post-sorting storage (Spinaci et al. 2016).

Because of the selection and binding of sperm in the porcine uterus, a significant 
reduction in the total sperm dose, to as low as 1 × 108, can maintain fertility com-
pared with controls if the semen is deposited deep in the uterus in front of the utero-
tubal junction (UTJ) (Martinez et al. 2001, 2006; Grossfeld et al. 2005; Vazquez 
et al. 2003, 2005, 2008a, b). Under research conditions, even a very low number of 
sperm (1 million) was sufficient to produce pregnancies (Krueger et al. 1999). A 
further significant reduction in the sperm dose can be made if inseminated directly 
into the oviduct either by laparotomy (Polge et al. 1970; Salamon and Visser 1973), 
using as little as 200,000 sex-sorted or unsorted sperm per oviduct (Rath et  al. 
1993), or by laparoscopy (Vazquez et al. 2008b; Roca et al. 2011; del Olmo et al. 
2014).

A possible approach to improve fertility after low dose insemination in pigs would 
be to reduce the losses of sperm during their uterine migration, by interrupting the 
processes of sperm binding to the uterine wall. While little is known about the physi-
ological importance of such sperm binding, its reduction could lead to fertility simi-
lar to that obtained with deep intrauterine AI, while allowing farmers to still use 
standard insemination tools. Intact sperm bind transitionally to the uterine wall, 
whereas most of the retrograde flow contains the less viable sperm. Moreover, when 
sperm bind to the uterine wall, the expression pattern of inflammatory and anti-
inflammatory genes changes in uterine epithelial cells, indicating a very specific 
interaction. This change in gene expression might either reflect the epithelial cells 
acting as a transient sperm reservoir, which could be important for late ovulating 
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sows, or it might be a priming signal that prepares the uterus for the implantation of 
embryos (Taylor et al. 2008, 2009a, b, c; Junge et al. 2010, 2011, 2012). However, as 
pregnancy rates are not reduced when semen is mechanically deposited in front of 
the UTJ, a biochemical prevention of sperm binding would presumably not affect 
embryo implantation or pregnancy rates. Bergmann et al. (2012a, b) showed that the 
in  vitro interaction of porcine sperm with monolayers of uterine epithelial cells 
(UEC) is mediated by lectin-like proteins located on the sperm surface and carbohy-
drate residues on the UEC. The glycan ligand involved in this binding was identified 
as sialic acid. With saturation of the ligands before insemination, sperm would no 
longer bind to the UEC, potentially increasing the number of sperm reaching the 
UTJ.  However, it is not completely clear which further physiological functions, 
besides a selection process, may be related to these sperm-UEC interactions.

As current technology requires the identification and sorting of individual sperm, 
the efficiency, even of the latest generation of sorters, can hardly fulfil the commer-
cial demand for sexed sperm in pigs. As opposed to AI, only very few sperm are 
required for IVF using in vivo or in vitro matured oocytes. The first embryos from 
IVF with sexed boar sperm were produced some 23  years ago at the USDA in 
Beltsville, USA (Rath et  al. 1993). In these early experiments, mature cumulus- 
oocyte complexes were collected from superovulated prepubertal gilts shortly 
before ovulation, with an average cleavage rate after IVF of 56.2%. Offspring were 
subsequently born after IVF with sex-sorted sperm employing either in vivo matured 
oocytes (Rath et al. 1997) or, later, in vitro matured oocytes (Abeydeera et al. 1998; 
Rath et  al. 1999). In parallel, a method was developed for gamete intrafallopian 
transfer (GIFT) as an alternative to IVF, especially for those cases where laboratory 
equipment was limited and did not allow fertilisation in vitro. For GIFT, matured 
oocytes and sorted sperm were placed, in two segments, into a 0.5 ml plastic straw, 
which at the open end was equipped with a smooth silicon tube, and both gametes 
were simultaneously transferred into the oviducts of peri-ovulatory gilts. Recipient 
follicles were aspirated to avoid fertilisation of their oocytes by the transferred 
sperm. Comparing GIFT with unsorted and sorted sperm, 50% and 48% of reflushed 
blastocysts had 25–80 cells, respectively (Rath et al. 1994a, b).

Fewer sperm are required for intracytoplasmic sperm injection (ICSI) than for all 
other IVF methods, as only a single cell is required for microinjection into the 
ooplasm of a matured oocyte. Oocyte activation is induced in many cases by the 
injection itself but can be supported by CaCl2 as a medium supplement. ICSI has 
been used successfully to produce male offspring employing only a single sexed 
sperm per oocyte (Probst and Rath 2003). However, with the exception of GIFT, all 
these in vitro techniques can only be commercialised if the adjunctive embryo trans-
fer can be performed non-surgically. The prerequisite is an efficient system for the 
in  vitro production of morula or blastocyst stage embryos. Krisher and Wheeler 
(2010) have developed a mostly automated system for IVEP in microfluidic chips, 
and Roca et al. (2003, 2006, 2011) built and tested uterine ET equipment, which is 
already manufactured for commercial use. Therefore, the medium-term future 
application of sex-sorted sperm in pigs will be in combination with the named bio-
techniques, at least for specific breeding purposes.
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4.5.4  Horses

As horses are multipurpose animals, the preferred gender depends on the breed and 
range of use. Little is known about the real market demand for sexed equine sperm. 
Using data from an unofficial survey by the Royal Association of the Friesian Horse 
Studbook, KFPS, Samper et al. (2012) reported about 52% of owners would make 
use of sexed sperm (63% female; 29% male), whereas 35% would not. Females are 
preferred for polo ponies and cutting horses and of course males as reining horses. 
However, more important especially in standard breeds is the decision of the owner, 
who demands a specific sex of a foal, either a colt out of a particular mare to pro-
duce a stallion or a filly to provide a brood mare replacement.

The anatomy and physiology of the female genital tract provide more challenges 
to the production of offspring from horses than from any other species. Similar to 
pigs, the insemination dose has to be much higher than in ruminants, and the UTJ is 
hardly traversable with insemination devices, even under hysteroscopic control. As 
opposed to ruminants, where sperm are mainly selected in the cervix, which encloses 
the AI device when placed into the uterine body or horn, stallions deposit their 
ejaculate into the uterus, where the AI device must be placed also. Therefore, it is 
necessary to either bypass the uterus or, in order to minimise the necessary sperm 
dose, place the inseminate very deep into the uterine horn.

Stallion sperm have a low sorting index of 59 (Garner 2006), and their sortability 
varies, not only among stallions but also among ejaculates (Rath and Sieme 2003; 
Clulow et al. 2008). Additionally, the freezability of stallion sperm, that is, their 
ability to survive freezing and thawing, varies widely (Vidament 2005). Early 
research on sex sorting of stallion sperm showed that it was even less efficient than 
in other species. Therefore, the first inseminations that resulted in the birth of a foal 
had to be made surgically. Buchanan et al. (2000) performed the first successful 
non-surgical inseminations in mares with 25 million sperm per ml. Lindsey et al. 
(2005) made it possible to store semen at 18 °C before sorting and insemination, 
with the aid of a video hysteroscope, deep into the uterine horn, obtaining first cycle 
pregnancies in 72% of such inseminations (Morris et al. 2000). Better pregnancy 
rates have been reported from hysteroscopic insemination of low numbers of sex- 
sorted spermatozoa, compared to rectally guided deep-uterine insemination 
(Lindsey et al. 2005).

Several groups have investigated ways to improve the quality of sex-sorted stal-
lion sperm. Minor improvements were made, for example, by using cushioned cen-
trifugation to both ameliorate the stress to the sperm resulting from post-sort 
reconcentration and to select more viable cells (Knop et al. 2005; Mari et al. 2015). 
Such cushioning agents as Puresperm® have been shown also to enrich the propor-
tion of morphologically normal sperm with high progressive motility and to improve 
their mitochondrial membrane potential, compared with untreated controls (Heer 
2007). The high dilution of the stallion sperm, which occurs during sex sorting, has 
a major impact on their post-sort quality (Gibb et al. 2013; da Silva et al. 2016a, b) 
as it does in other species (Klinc et al. 2007). This is exacerbated by the loss of 
seminal plasma that protects sperm against ROS, leading to mitochondrial damage 
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(Michl 2014) as well as DNA fragmentation (Gibb et al. 2013; da Silva et al. 2016a, 
b), and capacitation-like changes (Maxwell and Johnson 1997; da Silva et al. 2013). 
The loss of seminal plasma can be partially prevented by co-incubating the sperm 
and Hoechst dye prior to sorting (da Silva et al. 2014).

Long-term storage of sex-sorted stallion sperm in liquid nitrogen has been inves-
tigated by Clulow et al. (2008, 2012), in which semen was treated with two different 
extenders for labelling and sorting (KMT and Sperm TALP) and frozen after sorting 
in two different media (INRA 82® and a modified EDTA-lactose extender). The 
most successful sex-sorting protocols used KMT as the staining and incubation 
medium, while either INRA 82® or lactose-EDTA could be employed as cryo- 
diluents. After shipment of the sexed-frozen semen from Germany to Australia, one 
filly was born after hysteroscopic insemination.

Samper et  al. (2012) summarised the results of inseminations with sex-sorted 
sperm and subsequent embryo flushing and transfer. From 173 deep intrauterine 
inseminations with fresh sex-sorted sperm, 109 embryos were recovered and pro-
duced 60.4% pregnancies after ET. Insemination with a high dose of sperm resulted 
in only a 50% pregnancy rate, although pregnancies were obtained from all stallions 
used. This was less than might be expected from other studies (Gibb et al. 2012). 
Conversely, the fertility of sex-sorted frozen-thawed sperm was low (0–16%), with 
an increased incidence of embryonic death compared with the fresh sex-sorted 
sperm.

The only large-scale study, conducted in Argentina, presented the best fertility 
yet obtained using sexed sperm in horses, where a prerequisite was excellent man-
agement of both the sorting procedure and of the inseminations and embryo transfer 
(Panarace et al. 2014). In this experiment, conducted over 3 breeding seasons, mares 
were inseminated at 838 oestrous cycles, of which 435 (52%) yielded viable 
embryos, and 81.5% of these embryos resulted in a pregnancy when transferred 
singly to recipients. These results bode well for the large-scale application of sperm- 
sexing technology in horses, but to date commercial application remains based on 
short-term liquid storage of the sex-sorted sperm.

4.6  Sperm Damage Caused by Sex Sorting

The great challenge in sorting mammalian sperm by flow cytometry is to maintain 
their fertilising ability until they reach the mature oocyte in the oviduct of the 
inseminated female. During natural mating semen does not come into contact with 
the external environment and finds, in the female reproductive tract, optimal condi-
tions of temperature, pH and osmotic pressure, to name a few important factors. 
Conventional semen preservation already causes stress to the sperm, when they are 
processed and stored short term in a liquid state or even longer in a deep-frozen state 
in liquid nitrogen. In addition to this stress, sex sorting has the potential to cause 
further harm to each sperm cell. After insemination of rabbits with sex-sorted sperm, 
McNutt and Johnson (1996) found increased foetal mortality during early preg-
nancy. Cran et al. (1993) reported a reduction in both blastocyst development and 
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pregnancy rates after bovine IVF with flow-sorted sperm. It is amazing that so many 
offspring have been born without major genetic or phenotypic malformations, 
although insemination doses only contain as few as 1–2 million sorted sperm in 
bovine AI. Nevertheless, in most species, sorted sperm doses are less fertile than 
unsorted doses, and in the case of bull sperm, based on day 56 non-return rates, 
nearly two-thirds of this decline in fertility (8.6%) may be due to the low dose and 
a third (5.0%) to the process of sorting itself (Frijters et al. 2009).

4.6.1  Incubation with the Fluorescent Stain and Exposure 
to the UV Laser

Observing sperm through the various stages of the sorting process, a first stress factor 
is labelling and incubation with the fluorescent dye. The negative effects of the 
Hoechst stain are dependent on the co-incubation medium and the species (Downing 
et al. 1991; Guthrie et al. 2002). The most sensitive to the dye (60 μM) are boar 
sperm, whereas bull (90 μM) and human sperm (900 μM) easily withstand much 
higher concentrations of stain. In terms of mitochondrial function, Watkins et  al. 
(1996) described a dose-dependent impact of Hoechst 33342 on the tail beat fre-
quency of human sperm, and Spinaci et al. (2005) measured a loss of mitochondrial 
membrane potential after staining and sorting of boar sperm. Moreover, incubation 
with Hoechst 33342 increased the rate of spontaneous lipid peroxidation with nega-
tive effects on the motility of bull sperm (Klinc and Rath 2007), which were not 
independent from extender composition but were partly compensable (Mancini et al. 
2013). Nevertheless, despite these findings of effects of dose of the stain at the level 
of sperm function and ultrastructure, at the concentrations necessary for a differentia-
tion of the X and Y boar sperm populations, there appear to be no adverse effects on 
their motility or fertilising capacity after insemination (Vazquez et al. 2002).

In the subsequent stages of processing, however, Hoechst dye in combination 
with the energy released from the UV laser (150–200 mW) could affect DNA integ-
rity. In early studies, when higher dye concentrations were used than at present, the 
results did not completely exclude a combined effect of incubation with stain and 
exposure to the laser on chromosome integrity (Libbus et al. 1987). When applied 
to somatic cells, Hoechst 33342 and UV light are toxic and mutagenic (Durand and 
Olive 1982; Sinha and Hader 2002). However, in more recent studies, no effect was 
found on DNA methylation, when tested for IGF2 and IGF2 receptor genes in bulls 
(Carvalho et al. 2012). In human sperm, no increase was found in the incidence of 
endogenous nicks in any sperm after UV and fluorochrome exposure, compared 
with controls without exposure, nor after the sorting procedure in the flow cytome-
ter (Catt et al. 1997). This may be due mainly to the ultrashort UV exposure time of 
cells in the sperm sorter. Pamila et  al. (2004) inseminated sows with sex-sorted 
sperm and investigated the lymphocytes of newborn piglets. No increase was 
observed in genotoxic effects based on the frequency of the mutagenic index, nor 
was there evidence of any phenotypic abnormalities. Moreover in pigs, Guthrie 
et  al. (2002) compared the effect of UV laser power on embryos produced with 
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sexed boar sperm and did not find detrimental effects on embryo development 
between 25  mW and 125  mW of laser power. However, the higher power was 
advantageous in maintaining high resolution and separation of sperm. Schenk and 
Seidel (2007) also tested the effect of Hoechst 33342 dye and UV laser power on the 
integrity of bovine sperm. However, an examination of the various steps in the sort-
ing process indicated that mechanical damage, rather than Hoechst 33342 staining 
or laser exposure, was responsible for most of the decreased viability of the sex- 
sorted sperm (Garner and Suh 2002).

Alterations to the fine structure of the sperm tail and mitochondria have been 
noted by a number of researchers after sex sorting of mammalian sperm. In a com-
prehensive ultrastructural study on bull sperm, Michl (2014) found that co- 
incubation with Hoechst 33342, exposure to the laser, increased amplitude of the 
piezo crystal and exposure to the electrostatic field, all caused direct quantitative 
changes in the sperm mitochondrial conformation from orthodox to condensed. 
These changes led to a reduction in matrix volume and an increase in electron den-
sity. In parallel with these effects, the space between the internal and external mito-
chondrial membrane, as well as in the intra-cristal space, was enlarged, reducing the 
performance of the mitochondria (Michl 2014). These observations are in agree-
ment with reports, not necessarily associated with sex sorting, that ultrastructurally 
altered midpiece mitochondria, among other mitochondria with dilated intermem-
brane spaces, are associated with asthenozoospermia in humans (Pelliccione et al. 
2011). The mitochondrial disturbances resulting from sex sorting of sperm are also 
reflected in their energy metabolism. Sander (2016) found that both the ATP pro-
duction and mitochondrial membrane potential of bull sperm were reduced by the 
whole sorting process, whereas the fluorescent dye itself had no effect. Conversely, 
the combined exposure to Hoechst dye and laser increased mitochondrial condensa-
tion, and this may explain the loss of motility of bull sperm seen by Carvalho et al. 
(2010) under similar conditions.

4.6.2  Mechanical Forces

Sorting as such may not affect either viability or DNA defragmentation of sperm, 
but rather DNA damage may be caused by the mechanical shear forces associated 
with the procedure (Seidel and Garner 2002; De Ambrogi et al. 2006). This sugges-
tion was supported by data from SCSA tests indicating sex-sorted sperm have less 
homogenous distribution of sperm chromatin than their unsorted counterparts (Boe- 
Hansen et al. 2005).

However, during the sorting procedure, mechanical forces hit sperm during 
their association with different sorter components. Firstly, sperm come into contact 
with shear forces in the nozzle assembly when core stream and sheath fluid with a 
set differential pressure focus the orientation of the sperm head as soon as it leaves 
the injection needle. Suh et al. (2005) thoroughly investigated the effects of the 
differential pressure on bovine and equine sperm motility and membrane integrity. 
They reported a significant improvement in both parameters at a relatively low 

4 Technique and Application of Sex-Sorted Sperm in Domestic Farm Animals



86

pressure of 30  psi. However, as the sort resolution at high sorting speed also 
depends on the differential pressure, 40  psi has been recommended for routine 
work. Similar effects of differential pressure were found previously by Campos-
Chillon and de la Torre (2003): in the bovine IVF system reported by these authors, 
higher cleavage and blastocyst formation rates were achieved from sperm sorted in 
a lower than a higher pressurised sorter. In stallion sperm, in addition to oxidative 
stress mitochondrial dysfunction was also attributed to high-pressure mechanical 
stress (da Silva et al. 2016a, b).

Secondly, the high-frequency impulses of the piezo crystal, with variable ampli-
tude, induce forces on the assembly components as well as the fluidics and thereby 
on the sperm surface. The piezoelectric production of waves is necessary to form a 
discontinuous droplet stream, where ideally a separate droplet surrounds each 
sperm. The variable frequency is structurally related to the orifice diameter of the 
nozzle tip and the differential pressure of the system. Under conditions of high dif-
ferential pressure, Suh et al. (2005) observed that sperm motility was better if the 
piezo was switched off, and no droplets were formed, than when it was switched on. 
Conversely, neither the mitochondrial membrane potential nor the mitochondrial 
ATP content, as measured by luminescence, changed in relation to the piezo ampli-
tude (Sander 2016). Lowering the amplitude of the piezo crystal reduced the con-
densation of bovine mitochondria as observed by TEM in many but not all sperm 
(Michl 2014). Presumably, lower amplitude reduces the repeated change of the 
pressure pulses on the sperm surface and lowers the absolute cell membrane pres-
sure. Consequently, sperm are more likely to withstand the stress of hydromechani-
cal forces if the amplitude of the piezo crystal is reduced.

Thirdly, sorted sperm are pushed into the collection fluid with an approximate 
speed of 90Km/h. They arrive in a highly diluted state, surrounded by sheath 
medium that has washed away most of the membrane-protecting agents (decapaci-
tation factors) of the seminal plasma, which at ejaculation are bound to the sperm 
surface (Maxwell and Johnson 1999). The beneficial components of boar seminal 
plasma, in the case of highly diluted boar sperm, have been isolated to the PSP-II 
subunit of the PSP-I/PSPII spermadhesin (Garcia et al. 2006). In the case of ram 
seminal plasma, the beneficial proteins may be RSVP-14/20 (Barrios et al. 2005) or 
ram spermadhesin (Bergeron et al. 2005). As these decapacitation factors, produced 
in the accessory sex glands, get lost during sorting, sperm membranes are destabi-
lised and may pre-capacitate, shortening their fertilising lifespan. These changes 
may be reversible by the addition of seminal plasma fractions (Maxwell et al. 2007). 
Therefore, in addition to acting as a kind of mechanical cushion to break down the 
speed with which the sperm leave the flow sorter, collection tubes are preloaded 
with catch medium to provide a substitute for seminal plasma, which often incorpo-
rates decapacitation factors. Inclusion of seminal plasma in the staining extenders 
for boar and ram sperm, or in the collection medium for boar or bull sperm, has been 
shown to improve the viability and membrane integrity of sorted sperm (Maxwell 
and Johnson 1997, 1999; Centurion et al. 2003). Mostly, the collection medium is 
TES-TRIS-based with 2–20% egg yolk and 2% seminal plasma (Maxwell et  al. 
1998; Johnson 2000).
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In the future, liposomes may replace the egg yolk component of the collection 
medium, which may have several advantages for commercial application as it avoids 
the use of animal-derived products and provides for a standardised commercial col-
lection medium (Rath and Schmitz, unpublished data).

4.6.3  Electrical Charge

Charged droplets containing individual sperm are sorted in most standard flow 
cytometers by electrostatic deflection. The charge applied is related to the measured 
DNA content and is loaded on the last hanging droplet of the fluid stream. The 
charged droplets pass an electrostatic field of about 3000 V and, according to the 
polarisation of the charge, are deflected to either side of the centreline.

Repeated electric charging and electrostatic deflection have been proposed as 
another factor responsible for the reduced lifespan of sex-sorted sperm (Rath and 
Johnson 2008; Rath et al. 2009; Spinaci et al. 2006, 2010). The electrostatic volt-
age of a sorter is similar to that used for electroporation, which can induce the 
acrosome reaction (Tomkins and Houghton 1988). Therefore, the capacitation-like 
changes observed in the membranes of sex-sorted boar sperm by Maxwell and 
Johnson (1997) may have been an effect of the electric charge on the sperm mem-
brane, rather than the result of mechanical forces. Such changes are similar to those 
observed in capacitated sperm, although actin cytoskeleton polymerisation and 
protein tyrosine phosphorylation seem to be less affected by sex sorting compared 
with normal capacitation in bull and boar sperm (Bucci et al. 2012). Furthermore, 
exposure of cells to an electrostatic field is known to induce the formation of ROS 
(Sauer et al. 2005), which damage sperm membranes (Leahy et al. 2010). A physi-
ological level of ROS is necessary for hyperactivation, capacitation and the acro-
some reaction in vitro (de Lamirande et al. 1997), but excessive ROS adversely 
affects the integrity of the bull sperm tail (Klinc et al. 2007; Klinc and Rath 2007). 
Moreover, the decreased mitochondrial membrane potential caused by ROS is cor-
related with decreasing motility of stallion (Baumber et al. 2000) and human sperm 
(Shi et al. 2012).

Whether or not the electrostatic field has a direct and independent effect on 
sperm mitochondria is difficult to interpret. While the electrostatic field is perma-
nently present if switched on, unstained sperm that are not exposed to the laser are 
not deflected, as a discriminatory decision regarding the droplet charge cannot be 
made. In this case, therefore, they can only be recovered from the waste fluid, which 
has a high dilution effect and lacks the compensatory mechanisms normally applied 
by egg yolk or seminal plasma in the collection medium, and this alone may damage 
the sperm. Nevertheless, Spinaci et  al. (2006) related the distribution change of 
HSP70 to the electrostatic field, and Michl (2014) found significantly higher per-
centages of condensed mitochondria in sex-sorted bovine sperm tails compared 
with controls, when passed through the sorter with deflection plates activated. There 
may also be indirect effects on mitochondrial activity through the action of ROS 
resulting from the electrical charge. However, De Ambrogi et al. (2006) reported 
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that boar sperm membranes were damaged even if the electrostatic field was 
switched off and that the DNA fragmentation was still higher than in unsorted con-
trol sperm. Therefore, it remains controversial whether the effect of the electrostatic 
field has any direct relationship to the enrichment of ROS (Rath et al. 2013; Wang 
et  al. 2013), which are known also to induce mitochondrial condensation in 
Drosophila (Walker and Benzer 2004).

4.6.4  Alternatives to Electrostatic Deflection

To avoid repeated charging and electrostatic stress during sex sorting, a recently 
developed method (Heisterkamp et al. 2015) replaces electrostatic deflection with 
laser irradiation of the sperm droplet flow. An acoustic-optical modulator (AOM) 
triggers the signal from a DPSS Er:YAG laser to the droplet stream. The laser does 
not kill sperm but rather deflects those droplets containing sperm with unwanted sex 
characteristics into the waste by a short surface-directed impulse. Most of the laser 
light is absorbed within the first micrometre of the droplet, and the emitted laser 
light generates recoil in the droplet by laser-based evaporation. Consequently, a 
steam jet formation produces an acceleration of the droplet. A high absorption coef-
ficient of the liquid prevents sperm damage, and thermal interactions with the laser 
do not occur. This system allows sperm with desirable characteristics to pass through 
the sorter without being subjected to any deflection force. There were no differences 
in motility patterns or morphological integrity of bovine sperm after sorting with the 
laser-based deflection system compared with unsorted controls, whereas those 
sorted using electrostatic deflection lost 17% of their motility characteristics after 
6 h post-sorting incubation (Rath et al. 2013).

4.7  Alternatives to Quantitative Flow Cytometry

4.7.1  Microfluidics

An alternative to high-speed flow cytometry, for more efficient sorting, might be the 
application of specially designed microfluidic chambers (for a review see Knowlton 
et al. 2015). The goal of these developments is not currently focussed on the separa-
tion of X and Y chromosome-bearing sperm but rather on quality characteristics, 
mainly to enrich intact human sperm populations for IVF or ICSI or for the culture 
of gametes and embryos (Suh et al. 2003). Based on the knowledge of flow cytom-
etry, however, microfluidic sorting could provide a completely new approach to 
hydrodynamic cell orientation and chargeless deflection or impedance-related 
detection combined with a dielectrophoretic sorting (de Wagenaar et  al. 2016). 
Schulte et al. (2007) reported a microfluidic sperm-sorting device for the selection 
of motile sperm with high DNA integrity. Similarly, to avoid centrifugation of the 
sperm sample, Li et al. (2016) used microfluidic chambers to select previously sex- 
sorted sperm for motility, in order to improve embryonic development after 
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IVF. Technologies based on microfluidics may replace traditional sex sorting by 
flow cytometry, sooner or later. However, the initial impact on sperm sexing will be 
in the parallel use of disposable microfluidic chambers as, for example, described in 
recent patent applications (Inguran 2013a, b, c).

4.7.2  Replacement of Quantitative Flow Cytometry  
by Qualitative Signal Creation Using Gold Nanoparticles

The current sex-sorting technique based on quantitative differences between the X 
and Y chromosome-bearing sperm populations has limitations in efficiency, mainly 
related to single-cell orientation in front of the laser beam. Numerous unsuccessful 
attempts have been made to sort sperm by physical methods, and qualitative surface 
markers have failed to find application on a wider scale (Cran and Johnson 1996). 
Nevertheless, the generation of a qualitatively different emission signal from sperm 
carrying one of the sex chromosomes would provide the possibility for a major 
improvement in sperm sexing. Haploid sperm differ in their DNA sequence on X 
and Y chromosomes, which are distinguishable in  vitro by fluorescent in situ 
hybridisation (FISH). However, FISH requires disintegration of the sperm head as 
well as decondensation of chromatin (Kawarasaki et al. 1998), rendering the sperm 
non-functional.

Gold nanoparticles (AuNPs) have been assessed as suitable carriers for sequence- 
specific labelling of haploid mammalian sperm and for visualisation and tracing 
with an annealed DNA probe. Nanoparticles are known to have unique optical prop-
erties due to their strong surface plasmon resonance, and they can be made to func-
tion easily using thiol linkers. Compared with fluorochromes, AuNPs do not bleach 
and require only low energy because their quantum efficiency is very high (Taylor 
et al. 2014).

Different noble metals and metal alloys have been studied for nanotoxicity in 
various cells, tissues and organs, including sperm, oocytes and embryos (Tiedemann 
et al. 2014; Zhang et al. 2014; Feugang 2017). Toxicity of nanoparticles may be 
associated with their type, size and chemical characteristics (Taylor et  al. 2012; 
Tiedemann et al. 2014) and is specifically associated with nanoparticle dosage. The 
toxicity affects the sperm membrane and leads to decreased motility and fertilisa-
tion potential of spermatozoa (Barchanski et al. 2015; Feugang et al. 2012; Taylor 
et al. 2015; Yoisungnern et al. 2015). An important precursor to their utilisation is 
the process by which the nanoparticles are produced from solid material. Pulsed 
laser ablation in liquids (PLAL) is a new method that synthesises totally ligand-free 
colloidal nanoparticles. PLAL has a significant advantage over chemical methods 
for nanoparticle production, as it does not leave any toxic chemical residues, but it 
does result in a broader distribution of particle sizes, possibly causing toxic side 
effects. This can be minimised if ablation and bio-conjugation are geometrically 
separated in a flow chamber where peptides are used to quench particles of unsuit-
able diameter or further supported by size quenching in the presence of electrolytes 
and pulsed laser melting of nanoparticles in liquids (Rehbock et al. 2014).
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To use AuNPs as a qualitative marker to distinguish between X and Y sperm 
populations, three consecutive steps are necessary:

4.7.2.1  Internalisation of AuNPs Through the Sperm Membranes
So far, only capacitated sperm or those with a complete or partial acrosome reaction 
allow AuNP conjugates to enter through the plasma membrane. AuNPs have an 
external diameter of 10–100 nm, which is in the size range of those viruses against 
which sperm need protection. Internalisation of the nanoparticles by the sperm cell 
is also influenced by physical and chemical characteristics other than size, such as 
shape and electrochemical properties, the presence of ligands (Gao et  al. 2005; 
Chithrani et al. 2006; Chithrani and Chan 2007; Jiang et al. 2008; Arvizo et al. 2010; 
Zhang et  al. 2010), membrane fluidity, surface charge and functional molecules 
attached to the outer cell membrane. While ligand-free AuNPs enter cells by non- 
endosomal uptake (Salmaso et al. 2009; Taylor et al. 2010), particles with ordered 
arrangements of hydrophilic and hydrophobic functional groups are internalised by 
membrane wrapping (Verma et al. 2008).

In order to promote the internalisation of AuNPs into membrane-intact sperm 
heads, viral vectors (Everts et al. 2006), dendrimers (Shi et al. 2007) or supporting 
molecules have been tested and were attached together with a DNA probe to the 
AuNPs. Examples of cell-penetrating peptides (CPP) are TaT (transactivator of 
transcription) and penetratin. TaTs advance the internalisation of DNA (Tkachenko 
et al. 2004; Nativo et al. 2008; Mandal et al. 2009) and, when conjugated to AuNPs, 
support their endosomal transport into cells and cell nuclei (Petersen et al. 2011). 
Unfortunately, endosomal uptake does not occur in sperm.

The size of AuNPs used in the experiments of Taylor et al. (2009c, 2014) ranged 
around 50 nm. Further tests will be required to determine whether nanoclusters of 
from 3 to 5 nm will be able to pass through intact sperm membranes. Particles of 
larger size are not suitable for selective targeting in sperm heads due to diffusion 
limitations and a lack of plasmon coupling to the nanoclusters. This problem may 
be managed using small particles with distinctive optical properties, for example, 
fluorescent gold nanoclusters. Independently of internalisation, sperm cannot carry 
an unlimited number of AuNPs. A mass concentration dose of 10 mg/ml, equal to a 
total dose of 14,000 nanoparticles per sperm, leads to a decrease in their motility, 
presumably caused by the complexion of thiol or disulphide groups at the sperm 
surface. Ligand-free gold nanoparticles also impair sperm fertilising ability proba-
bly by agglomerate attachment to the sperm membrane, thereby mechanically inter-
fering with sperm-oocyte interactions (Tiedemann et al. 2014; Taylor et al. 2015).

4.7.2.2  Non-invasive Coupling of a Specific DNA Probe 
with the Intact DNA Double Strand by Triplex Binding 
and Accumulation of Nanoparticles

To identify repeated Y chromosomal DNA sequences, a specific probe has to be 
generated and annealed to AuNPs. Furthermore, accumulation of the particles must 
neither affect the fertilising capacity and lifespan of sperm nor should it disintegrate 
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the Y chromosome. Therefore, DNA hybridisation is performed using triplex form-
ing oligonucleotides (TFOs) (Hoogsteen 1963). Triplex target sites and triplex 
hybridisation are very suitable for gold nano-targeting because they contain many 
poly-purine sequences interrupted by one or more base pair inversions. Target 
sequences very close to each other result in a better AuNP accumulation and there-
fore provide a better signal (Xodo et al. 2001). As a triplex hybridisation with DNA 
probes is a rather fragile connection, more stable binding can be established with 
DNA derivatives, such as locked nucleic acids (LNA) and peptide nucleic acids 
(Johnson and Fresco 1999; Buchini and Leumann 2003; Seidman and Glazer 2003). 
In vitro, AuNP-conjugated LNA probes form the most stable triplexes in solution 
(McKenzie et al. 2008).

4.7.2.3  Recognition of the Sex-Specific Signal Pattern  
to Sort the Sperm Population

The detection principle is based on the fact that AuNPs that are aggregated or accu-
mulated, for example, due to binding of probes to highly repetitive DNA sequences, 
change their plasmon resonance peak. This can be measured as a spectral absorption 
(bathochromic) shift to the red as it changes the wavelength of the maximum light 
extinction, which can be used as a criterion to differentiate X from Y sperm (Jain 
2007).

So far, the qualitative identification of Y chromosome-bearing sperm is still at 
the laboratory research stage. Many technical and functional aspects have been 
solved: repeated sequences have been used to identify the Y chromosome by triplex 
DNA formation; non-toxic functionalised AuNPs with DNA probes and transport 
promoting peptides have reached a high-throughput level; and bathochromic shifts 
of spectral absorption have been recognised. However, it has not been possible, so 
far, to internalise functionalised AuNPs of different diameter through the intact 
sperm membranes of different species. Further research is necessary, for example, 
to assess whether a temporal capacitation can be achieved and the change in mem-
brane fluidity used to insert the nanoparticles. Once this last step has been eluci-
dated, separation by qualitative signals may provide many advantages over the 
currently used quantitative sex-sorting method. For example, orientation of sperm 
in front of the laser will be unnecessary, all individually identified sperm would be 
sorted, and depending on the nanoparticle used, alternative methods to flow cytom-
etry may be developed.

4.7.3  Promotion of Naturally Occurring Genome Variations  
by Gene Editing

As individual sperm sorting is highly inefficient in species that require large insemi-
nation doses, gene editing might be a valuable alternative, if ethical considerations 
allow its application. The methods available for gene editing are discussed elsewhere 
in this book. The purpose of gene editing, in the context of sex selection in farm 
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animals, is to either modify or eliminate the coding from one of the sex chromo-
somes or its target autosome, so that fertile offspring of only one sex are born. 
Alternatively, gene editing, in order to discriminate specific functions like spermato-
genesis and the related hormone production, can be used to modify offspring of the 
unwanted sex. Until recently, sperm DNA was unavailable for editing. However, 
genome editing has become a fast-growing research area since the development of 
sequence-specific nucleases and four different editing processes: meganuclease, zinc 
finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and 
clustered regularly interspaced short palindromic repeats (CRISPR). The CRISPR-
Cas9 system is distinctive, in that it has a relatively simple design and high efficiency. 
It induces a DNA double-strand break in the target sequence, which is repaired either 
by non-homologous end-joining (NHEJ), if no repair template is present, or by 
homology-directed repair (HDR). The NHEJ pathway produces small insertions and 
deletions (indels) with a relative high probability of forming coding regions to a 
frame shift and therefore a functional gene knockout. HDR is preferable for repairing 
mutations or adding DNA sequences. Daniel and Fahrenkrug (2016) provide a good 
overview of the possible applications of gene editing to sperm sexing (patent applica-
tion EP3003021 2016). TALEN and CRISPR-Cas9 can be used, when applied in 
germ line (GS) cells, to study spermatogenesis and its genetic regulation. Sato et al. 
(2015) efficiently tested TALEN and double-nicking CRISPR- Cas9 on GS cells with 
two representative genes (Rosa26; Stra8) and recommended Rosa26-targeted cells as 
a means to differentiate competent sperm, whereas Stra8- targeted cells led to defi-
cient initiation of meiosis. Both methods could be used during spermatogenesis to 
modify sperm or stem cell spermatogonia (Vassena et al. 2016; Wu et al. 2015).

Gene editing could be an important tool for pig reproduction in order to elimi-
nate sexually mature boars and the boar taint in the carcass. Two different strategies 
are outlined below, from which either normal female piglets and phenotypical males 
without testicles – and the according hormone production – would be born or from 
which there would be no male offspring:

 (a) The first strategy employs the CRISPR-Cas9 system, at the level of the germi-
nal tissue, to induce a knockout of the SRY gene, thereby preventing fertile Y 
chromosome-bearing sperm from forming in the foetal genital ridge. Sertoli 
and Leydig cells would not be formed, and their hormonal products would not 
be secreted. In this default case, the Wolffian duct would not develop, and the 
Mullerian duct would not be supressed. The litters produced, in the case of 
multiparous species, would contain females and infertile, phenotypically, male 
offspring.

 (b) For the second strategy, in which the production of male offspring is prevented, 
a multiple double-stranded tailoring with CRISPR-Cas9 would be required to 
modify the function of Y chromosome-bearing sperm. In consequence, only X 
sperm could participate in fertilisation. During spermatogenesis, the Y chromo-
some does not fulfil any functions that could adversely affect the animal in its 
development, so a modification of their genome would not be detrimental. The 
advantage of this approach is that only female offspring would be born.
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4.8  Concluding Remarks

Farmers have long desired specific sex-directed reproduction in domestic animals. The 
technique of sex selection using flow cytometric sorting of sperm has gained a signifi-
cant role in the food production chain that on the one hand has to fulfil the nutritive 
requirements of an exploding population and on the other needs to integrate sustainable 
agricultural concepts. Sex sorting is commercially available for several species but has 
been applied mostly in dairy cattle. The technique is challenging, as it has to identify, 
en masse, each individual sperm and maintain its fertilising capacity even after long-
term storage. A good measure of the importance of sex sorting is the large number of 
international patent applications that have been made and patents granted, reflecting 
the intensive research and investment, that has been devoted to the technique. However, 
society should be aware that the significant networks generated by this intellectual 
property could create dependencies that might not be in consensus with marketing 
demands and may limit the developmental support for alternative sexing methods.

It is foreseeable that the existing quantitative sex-sorting technology, using flow 
cytometry, is only an intermediate method, as it is hampered by limited efficiency 
and high production costs. Alongside new qualitative sorting methods, identifying 
the specific sex-related characteristic of sperm, perhaps in combination with nanopar-
ticles and with microfluidic systems replacing the traditional flow cytometer, will be 
new genetic techniques. These techniques will provide a simplified system to gener-
ate offspring not only of the required sex but also incorporating other important 
genetic characteristics. Gene editing based on meganucleases, ZFN, TALEN, 
CRISPR-Cas9 or future systems like CRISPR-AID are the first such techniques to 
appear on the scientific horizon and have quickly found their way into experimental 
reproduction. Whether or not gene editing will be applied in animal production will 
depend on ethical priorities rather than technical barriers. However, as the technol-
ogy develops into the future, sex selection in livestock will continue to play a major 
role in providing sufficient food, of the highest quality and with sustainable protec-
tion of the environment, to meet the needs of a growing world human population.
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5Embryo Transfer Technology in Cattle

Gabriel A. Bó and Reuben J. Mapletoft

Abstract
Although the first mammalian embryo transfers were done more than 100 years 
ago, commercial bovine embryo transfer came into being in the early 1970s with 
the importation of European breeds of cattle into North America. Since that time 
commercial bovine embryo transfer has grown throughout the world, and in 
2016, approximately one million bovine embryos were transferred, and several 
thousands of embryos were transported internationally. Because in vivo-derived 
bovine embryos can be made specified pathogen-free by washing procedures, 
they provide the ideal means of moving animal genetics around the world. 
Embryo transfer techniques have improved over the years so that new methods 
of controlling ovarian function facilitate superstimulation of donors and synchro-
nization of recipients and nonsurgical procedures facilitate on-farm embryo 
transfer.

5.1  Introduction

The commercial bovine embryo transfer industry arose in the early 1970s in North 
America (Betteridge 2003; Seidel Jr 1981). European breeds of cattle that had been 
imported into Canada were valuable and scarce, and embryo transfer offered a 
means by which their numbers could be multiplied rapidly. Private veterinary prac-
titioners and small embryo transfer companies adopted a research technology for 
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commercial use. They also founded the International Embryo Technology Society 
(IETS) in 1974 to facilitate sharing of ideas and technical information which was 
considered necessary for progress to be made (Carmichael 1980; Schultz 1980). 
The IETS became the main forum for scientific and regulatory exchange and discus-
sion of embryo transfer and associated technologies. In particular, the Import/
Export Committee of the IETS (now referred to as the Health and Safety Advisory 
Committee; HASAC) has been instrumental in gathering and disseminating scien-
tific information on the potential for disease control with bovine embryo transfer. 
The Manual of the International Embryo Technology Society: A Procedural Guide 
and General Information for the Use of Embryo Transfer Technology Emphasizing 
Sanitary Procedures has become the reference source for sanitary procedures used 
in embryo export protocols (IETS Manual 4th Edition 2010).

In 2016, practitioners from around the world collected 632,638 in vivo-derived 
embryos from 93,815 donors; 195,563 were transferred into recipients immediately 
after collection (fresh), while the remainder were cryopreserved for transfer at a 
later date (Perry 2017). North America accounted for 52.5% of in  vivo-derived 
bovine embryos, while Europe accounted for 20.4% and South America 7.5%. In 
addition, 666,215 in vitro-produced bovine embryos were produced in 2016, 56.8% 
of which were in South America, 39.1% in North America, and 2.8% in Europe. In 
vitro embryo production has increased very rapidly in both South and North America 
in the last two decades.

Very briefly, bovine embryo transfer involves the selection, management, and treat-
ment of donors and recipients, and the collection and transfer of embryos within a 
narrow window of time 6–8 days after estrus. This technology has been incorporated 
into dairy and beef cattle operations and often involves the participation of herd veteri-
narians. The following chapter draws heavily on material contained in prior reviews 
and extensive literature of primary research on the topic, including reviews (Mapletoft 
1985; Mapletoft and Hasler 2005) and research reports from the authors’ laboratories. 
Some of the important uses of bovine embryo transfer follow. A more detailed review 
of bovine embryo transfer is available online (Mapletoft and Bó 2016).

5.2  Applications

5.2.1  Planned Matings

The most common use of bovine embryo transfer has been the proliferation of so- 
called desirable phenotypes. As AI has permitted the widespread dissemination of a 
male’s genetic potential, embryo transfer has provided the opportunity to dissemi-
nate the genetics of elite females. Embryo transfer has also been used to expand a 
limited gene pool rapidly, e.g., the dramatic rise of the embryo transfer industry in 
North America in the early 1970s. The production of AI bulls through embryo trans-
fer is currently a common application of planned matings (Lohuis 1995; Teepker 
and Keller 1989).

G. A. Bó and R. J. Mapletoft



109

5.2.2  Genetic Improvement

Smith (1988a) introduced the concept of MOET (multiple ovulation and embryo 
transfer). He showed that MOET programs could result in increased selection inten-
sity and reduced generation intervals, resulting in increased genetic gains. The 
establishment of nucleus herds and “juvenile MOET” in heifer offspring was shown 
to result in genetic gains near twice that achieved with traditional progeny test 
schemes (Smith 1988b). Genomic techniques are now being used to select embryo 
donors, and genomic analysis has become essential for the selection of bull dams 
used in embryo transfer (Ponsart et al. 2014; Seidel Jr 2010). The commercial cattle 
industry has benefited greatly from the use of bulls produced through MOET pro-
grams (Christensen 1991).

5.2.3  Disease Control

For an infectious agent to be transmitted by embryo transfer, the pathogen must 
be present within the cells of the embryo (true embryonic infection), in associa-
tion with the zona pellucida, or in the medium bathing the embryo. Infectious 
agents have not been shown to pass through the zona pellucida of the bovine 
embryo, but some tend to adhere to the outer surface of the zona pellucida. 
Similarly, embryos with damaged or compromised zonae pellucidae could allow 
an infectious agent to invade the embryo itself. Thus, procedures for decontami-
nating the zona pellucida feature strongly in the sanitary handling protocols advo-
cated in the IETS Manual 4th Edition (2010). These protocols include inspection 
of the embryo microscopically at a magnification of at least 50 times to insure that 
the zona pellucida is intact and free of adherent material that might trap infectious 
agents. In addition, the embryo must be washed at least ten times with fresh 
medium at a 100-fold dilution and a new sterile pipette for each wash. Enveloped 
viruses may stick to the zona pellucida, but they can be removed/inactivated by 
trypsin treatments. Thus, two trypsin treatments between washes 5 and 6 are rec-
ommended when viruses adhering to the zona pellucida are of concern (Singh 
1985; Stringfellow 2010).

It is now clear that in vivo-derived bovine embryos do not transmit infectious 
diseases providing they are handled correctly between collection and transfer. 
This includes inspection of the zona pellucida at >50× magnification and wash-
ing/trypsin treatment procedures. The IETS has categorized disease agents based 
on the risk of transmission by in vivo-derived bovine embryos (IETS Manual 4th 
Edition; Stringfellow and Givens 2010). Category 1 includes disease agents for 
which sufficient evidence has accrued to show that the risk of transmission is 
negligible. This category includes enzootic bovine leukosis, foot-and-mouth dis-
ease (cattle), bluetongue (cattle), Brucella abortus (cattle), infectious bovine rhi-
notracheitis, pseudorabies in swine, and bovine spongiform encephalopathy. 
Category 2, 3, and 4 diseases are those for which less research information has 
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been generated, but it is noteworthy that there is no evidence that an infectious 
agent has been transmitted by in  vivo-derived bovine embryos. Consequently, 
embryo transfer procedures are recommended for the salvage of genetics in the 
face of a disease outbreak (Wrathall et al. 2004).

5.2.4  Embryo Import-Export

The ability to utilize in vivo-derived bovine embryos to prevent the transmission of 
infectious disease makes them ideal for the international movement of animal germ-
plasm. Benefits of embryos also include reduced transportation and quarantine 
costs, a wider genetic base from which to select, the retention of the original genet-
ics within the exporting country, and adaptation. Although handling procedures rec-
ommended by the IETS make it possible to safely export in vivo-derived embryos, 
the zona pellucida of in vitro-produced bovine embryos differs, and pathogens are 
more difficult to remove by washing/trypsin treatment procedures (Stringfellow and 
Givens 2000). Thus, specific export protocols which include donor, herd, and media 
testing are usually required for the international movement of in  vitro-produced 
embryos (Stringfellow et al. 2004).

5.3  General Procedural Steps

Donors are usually superstimulated with gonadotrophins to increase the numbers 
of retrievable embryos. Methods of controlling ovarian function have resulted in 
increased embryo production per unit time. Donors are now being superstimulated 
as often as every 30 days, and more embryos are being produced per year with no 
change in the actual superstimulation protocol (Bó and Mapletoft 2014). The donor 
may be inseminated naturally or artificially, and embryos are normally collected 
nonsurgically 6–8 days after estrus. Following collection, embryos must be identi-
fied, evaluated, and maintained in a physiological medium prior to transfer. They 
may also be subjected to manipulations or cryopreservation (Hasler 2003). The 
following sections outline the control of ovarian function in donors and 
recipients.

5.4  Superovulation

The objective of superstimulation treatments is to obtain the maximum number of 
transferable embryos with a high probability of producing pregnancies. Wide ranges 
in superovulatory response and embryo yield have been detailed in several reviews 
of commercial embryo transfer records (Hasler et al. 1983; Looney 1986). These 
reports demonstrate a high degree of unpredictability that affects the efficiency and 
profitability of bovine embryo transfer.
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5.4.1  Gonadotrophins and Superovulation

Two different types of gonadotrophins have been used to induce superovulation in 
cattle: equine chorionic gonadotrophin (eCG) and pituitary extracts containing 
follicle- stimulating hormone (FSH; Kelly et al. 1997; Murphy et al. 1984). Equine 
chorionic gonadotrophin is a complex glycoprotein with both FSH and luteinizing 
hormone (LH) activity and has been shown to have a half-life of approximately 40 h 
in the cow (Schams et al. 1978); thus, eCG is normally administered once to induce 
superovulation (Murphy and Martinuk 1991). Recommended doses range from 
1500 to 3000 IU/animal with 2500 IU by intramuscular injection commonly used. 
The long half-life of eCG also causes protracted ovarian stimulation, abnormal 
endocrine profiles, large follicles, and reduced embryo quality (Mikel-Jenson et al. 
1982; Saumande et al. 1978). These problems have been overcome by the intrave-
nous administration of antibodies to eCG at the time of the first insemination 
(Dieleman et al. 1993; Gonzalez et al. 1994). However, antibodies to eCG are not 
available commercially, and so eCG is seldom used to superstimulate cattle.

Pituitary extracts are most commonly used to superstimulate cattle (Armstrong 
1993). As the biological half-life of pituitary FSH in the cow has been estimated to 
be 5 h or less (Laster 1972), it must be injected twice daily to induce superovulation 
(Monniaux et al. 1983; Walsh et al. 1993). The usual regimen is 4 or 5 days of twice 
daily intramuscular treatments with FSH. Forty-eight to 72 h after initiation of treat-
ment, prostaglandin F2α (PGF) is administered to induce luteolysis. Estrus (and 
preovulatory LH release) occurs in 36–48 h, with ovulation 24–36 h later (Reviewed 
in Bó and Mapletoft 2014). Purified pituitary extracts with LH removed are now 
available; Folltropin-V (Vetoquinol) is a porcine pituitary extract with approxi-
mately 84% of the LH removed (Gonzalez-Reyna et  al. 1990). It has been used 
successfully in constant or decreasing dose schedules with PGF given either 48 or 
72 h after initiating treatment (Mapletoft et al. 2002).

Recombinant bovine FSH (rbFSH) has also been used to induce superovulation 
in cattle. Wilson et  al. (1993) reported high superovulatory responses following 
twice daily administration of rbFSH, and more recently, Carvalho et  al. (2004b) 
reported the successful superstimulation of Holstein heifers with a single adminis-
tration of a long-acting rbFSH. Although there are no products available for cattle 
currently, rFSH is used in human medicine suggesting that recombinant FSH is 
likely to be used in cattle, provided it gains registration and is affordable.

5.4.2  Follicular Wave Dynamics and Superovulation

We have demonstrated a greater superovulatory response when gonadotrophin treat-
ments are initiated on Day 9 of the estrous cycle (Day 8 post-ovulation) as compared to 
Days 3, 6, or 12 (Lindsell et al. 1986). Ultrasonography has now shown that the second 
follicle wave emerges 8.5–10.5 days after ovulation (Adams 1994; Ginther et al. 1989; 
Pierson and Ginther 1987). We have also shown that superovulatory response is greater 
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when FSH treatments are initiated at the time of follicle wave emergence (Nasser et al. 
1993). While initiation of FSH treatments in the presence of a dominant follicle resulted 
in a 40–50% decrease in superovulatory response (Bungartz and Niemann 1994; 
Guilbault et al. 1991; Kim et al. 2001; Shaw and Good 2000), the presence of a large 
number of follicles 3–6 mm in diameter 8–10 days after ovulation, in the presence of a 
large follicle, provides evidence for dominant follicle regression and emergence of a 
new follicle wave (Adams et al. 2008; Singh et al. 2004).

5.4.3  Manipulation of the Follicular Wave for Superstimulation

The conventional protocol of initiating ovarian superstimulation during mid-cycle 
(8–12 days after estrus) has now been supported by ultrasonographic evidence indi-
cating that mid-cycle is the approximate time of emergence of the second follicular 
wave. However, the day of emergence of the second follicular wave differs among 
individuals within wave type and is 1 or 2 days later in two- than three-wave cycles 
(Adams et al. 2008). In addition, the necessity of waiting until mid-cycle to initiate 
superstimulatory treatments implies monitoring estrus and an obligatory delay mak-
ing it difficult to superstimulate large numbers of donors at the same time. An alter-
native approach is to initiate superstimulation treatments subsequent to the 
synchronization of follicular wave emergence. There are three methods of synchro-
nizing follicle wave emergence for superstimulation.

5.4.3.1  Follicle Ablation
The most efficacious approach to the synchronization of follicle wave emergence 
involves transvaginal ultrasound-guided ablation of all follicles ≥5 mm, regardless 
of stage of the estrous cycle (Bergfelt et al. 1994; Garcia and Salaheddine 1998). 
This removes the suppressive effects of follicular products (estradiol and inhibin) on 
FSH release, resulting in an FSH surge and emergence of a new follicular wave 
1 day later (Adams et  al. 1992a). Superstimulatory treatments are then adminis-
tered, beginning 1 or 2 days after ablation (Bergfelt et al. 1997). The timing of estrus 
was more synchronous when a progestin device was inserted for the period of super-
stimulation and two injections of PGF were administered on the day of device 
removal. Transvaginal ultrasound-guided ablation of only the dominant follicle 
(Bungartz and Niemann 1994; Shaw and Good 2000) during mid-diestrus, followed 
in 2 days by superstimulation, also resulted in a higher superovulatory response 
than when the dominant follicle was not ablated. We have also shown that ablation 
of the two largest follicles at random stages of the estrous cycle was efficacious in 
synchronizing follicular wave emergence for superstimulation (Baracaldo et  al. 
2000). Unfortunately, follicle ablation is difficult to utilize under field conditions. 
The recommended protocol for superstimulation utilizing follicle ablation is illus-
trated in Fig. 5.1.
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5.4.3.2  Estradiol and Progesterone
We have shown that treatment of progestin-treated cattle with estradiol results in 
synchronous emergence of a new follicle wave (Bó et al. 1995, 1996). The mecha-
nism apparently involves suppression of FSH, and possibly LH, which results in 
regression of FSH- and LH-dependent follicles. Once follicle regression begins and 
the estradiol is metabolized, FSH surges, and a new follicle wave emerges, 1 day 
later (Adams et al. 1992a). The use of estradiol-17β in progestin-treated cattle was 
followed by the emergence of a new wave 3–5 days later, regardless of the stage of 
follicular growth at the time of treatment. Estradiol-17β is normally injected with 
50–100 mg of progesterone at placement of a progestin device to prevent estrogen- 
induced LH release in animals without a functional corpus luteum (CL). Data from 
experimental (Bó et  al. 1996) and commercial (Bó et  al. 2002) embryo transfer 
records show that the superovulatory response of donors given estradiol-17β and 
progesterone at unknown stages of the estrous cycle was comparable to those super-
stimulated 8–12 days after estrus.

Unfortunately, estradiol-17β is not available commercially in many coun-
tries (Lane et  al. 2008), and so we investigated the use of estrogen esters. 
Treatment with 2.5 mg estradiol benzoate plus 50 mg progesterone at the time 
of progestin device insertion resulted in emergence of a new follicular wave 
3–4  days later. Superstimulatory treatments initiated 4  days after treatment 
resulted in responses comparable to the use of estradiol-17β plus progesterone 
or superstimulation initiated 8–12 days after estrus (Bó et al. 2002). The rec-
ommended protocol for superstimulating cattle utilizing estradiol and proges-
terone is shown in Fig. 5.2.

D0
D15

D2 D4 D5 D6 D7 D13

Embryo
Collection

AIAI

DFR

P4 Device

FSH

Estrus
or

GnRH
PGF

Fig. 5.1 Treatment schedule for superstimulating donors after the removal of the dominant folli-
cle (DFR). On Day 0, donors receive a progesterone-releasing (P4) device, and all follicles ≥5 mm 
in diameter, or the two largest follicles, are ablated using ultrasound-guided follicle aspiration. 
Superstimulatory treatments are initiated 1.5 or 2 days later, with twice daily intramuscular doses 
of FSH over 4 or 5 days. PGF is administered with the fifth and sixth (or seventh and eighth) FSH 
injections, and P4 devices are removed 24 h after the first PGF. Donors in estrus or receiving GnRH 
24 h after P4 device removal are inseminated 12 and 24 h later. Embryos are collected 7 days after 
estrus or GnRH treatment
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5.4.3.3  Gonadotrophin-Releasing Hormone (GnRH)
The administration of GnRH or porcine LH (pLH) has been shown to induce ovula-
tion of a dominant follicle present at the time of treatment followed by emergence 
of a new follicle wave in 2 days (Martinez et al. 1999; Pursley et al. 1995; Thatcher 
et  al. 1993). However, neither GnRH nor pLH always induces ovulation, and if 
ovulation does not occur, follicle wave emergence will not be synchronized 
(Martinez et  al. 1999). The reported asynchrony of follicular wave emergence 
(range, 3 days before treatment to 5 days after treatment) suggested that GnRH- 
based approaches may not be feasible for superstimulation. However, three reports 
revealed no differences in the numbers of transferable embryos when donors were 
superstimulated 2 days after treatment with GnRH as compared to treatment with 
estradiol (Hinshaw 1999; Steel and Hasler 2009; Wock et al. 2008). It is noteworthy 
that in these studies, GnRH was administered 2–3 days after insertion of a progestin 
device which may have resulted in an unovulated dominant follicle which would be 
more responsive to GnRH treatment.

Bó et al. (2008) reported on another protocol for superstimulation following the 
administration of GnRH. It was based on a study in which a persistent follicle was 
induced by the administration of PGF at the time of insertion of a progestin device 
7–10 days before GnRH (Small et al. 2009); ovulation and follicle wave emergence 
occurred 1–2 days after the administration of GnRH in >90% of cows, indicating 
that this approach could be used in groups of randomly cycling donors. As super-
ovulatory responses following administration of GnRH 2 vs 7 days after insertion of 
a progestin device were not significantly different (Hinshaw et  al. 2015), either 
approach would appear to be efficacious. The recommended protocols for super-
stimulating cattle following the use of GnRH to synchronize follicle wave emer-
gence are shown in Fig. 5.3.

D0 D4 D6 D7 D8 D9 D15

Embryo
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AIAI

EB + P4

P4 Device
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Estrus
or
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PGF

Fig. 5.2 Treatment schedule for superstimulating donors after synchronizing follicle wave emer-
gence with estradiol and progesterone. On Day 0, donors receive a progesterone-releasing (P4) 
device and 2 or 2.5  mg estradiol benzoate (EB) and 50 or 100  mg of P4 intramuscularly. 
Superstimulatory treatments are initiated on Day 4 with twice daily intramuscular doses of FSH 
over 4 or 5 days. PGF is administered with the fifth and sixth (or seventh and eighth) FSH injec-
tions, and P4 devices are removed 24 h after the first PGF. Donors in estrus or receiving GnRH 24 h 
after P4 device removal are inseminated 12 and 24 h later. Embryos are collected 7 days after 
estrus or GnRH
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5.4.4  Superstimulation of Donors with Abnormal  
Ovarian Function

Cows with abnormal ovarian function are difficult to superstimulate because they 
usually do not have a functional CL, they show estrus at unpredictable times, and 
stage of follicle development is difficult to predict. It was the need to superstimu-
late cows with abnormal ovarian function that led to the use of estradiol prior to 
the administration of FSH. In a retrospective study, embryo production did not 
differ between 190 cows with abnormal ovarian function which were superstimu-
lated 7 days after receiving a norgestomet implant and an injection of norges-
tomet and estradiol valerate and 260 control cows superstimulated between Days 
8 and 12 of the estrous cycle. Subsequently, it was shown that estradiol valerate 
treatment resulted in emergence of a new follicle wave (reviewed in Mapletoft 
and Bó 2004).
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D0 D2PM D4PM D8AM D9 D10                D16
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GnRH
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PGF
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Fig. 5.3 Treatment schedules for superstimulating donors after synchronization of follicle wave 
emergence with GnRH. Donors receive a progesterone-releasing (P4) device alone (a) or along 
with a dose of PGF (b). GnRH is administered 2 or 7 days later, and superstimulatory treatments 
are initiated 36–48 h after GnRH with twice daily intramuscular doses of FSH over 4 or 5 days. 
PGF is administered with the fifth and sixth (or seventh and eighth) FSH injections, and P4 
devices are removed 24 h after the first PGF. Donors in estrus or receiving GnRH 24 h after P4 
device removal are inseminated 12 and 24 h later. Embryos are collected 7 days after estrus or 
GnRH
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5.4.5  Follicle Numbers and Superovulation

The numbers of antral follicles in the ovary as determined by ultrasonography have 
been shown to vary, and superstimulatory response has been shown to be correlated 
with the numbers of small antral follicles at the time of initiating FSH treatments 
(Ireland et al. 2007; Singh et al. 2004). In humans, circulating antimullerian hor-
mone (AMH) concentrations have been found to be an informative serum marker 
for ovarian follicle reserve (Toner and Seifer 2013), and information is accumulat-
ing that circulating AMH concentrations may be a reliable marker for predicting 
antral follicle numbers in cattle (Batista et al. 2014; Ireland et al. 2011; Monniaux 
et  al. 2013). There was high repeatability across different phases of the estrous 
cycle, days in milk, levels of milk production, and parities making AMH determina-
tions particularly useful to select potential donors or to predict superovulatory 
response in selected donors (Souza et al. 2014).

5.4.6  Reducing the Need for Multiple Treatments with FSH

Because the half-life of pituitary FSH is short in the cow (Laster 1972), traditional 
superstimulatory treatment protocols have consisted of twice daily intramuscular 
injections over 4 or 5 days (Bó et al. 1994). This requires constant attention and 
increases the possibility of failures due to non-compliance. Twice daily treatments 
may also cause stress in donors with a subsequent decreased superovulatory 
response and/or altered preovulatory LH surge (Edwards et al. 1987; Stoebel and 
Moberg 1982). Therefore, simplified protocols may be expected to reduce donor 
handling and improve response.

A single subcutaneous administration of FSH has been shown to induce a super-
ovulatory response equivalent to the traditional twice daily treatment protocol in 
beef cows in high body condition, i.e., body condition score of >3 out of 5 (Bó et al. 
1994; Hiraizumi et  al. 2015), but results were not repeatable in Holsteins which 
presumably had less adipose tissue. However, superovulatory responses were 
improved in Holsteins when the FSH dose was split into two; 75% administered 
subcutaneously on the first day of treatment, and the remaining 25% administered 
48 h later when PGF is normally administered (Lovie et al. 1994).

An alternative in inducing superovulation with a single administration of FSH is 
to utilize agents that cause FSH to be released over several days. These are com-
monly referred to as polymers which are biodegradable and nonreactive in tissues 
facilitating use in animals (Sutherland 1991). In a series of experiments, FSH was 
diluted in a 2% hyaluronan solution and administered as a single intramuscular 
injection (to avoid the effects of body condition); a similar number of ova/embryos 
were produced as with the twice-daily FSH protocol (Tríbulo et al. 2011). However, 
2% hyaluronan was viscous and difficult to mix with FSH. More dilute preparations 
(1% or 0.5% hyaluronan) were easier to mix with FSH but were less efficacious in 
a single administration protocol. Their use was improved by splitting the total dose 
of FSH into two injections administered 48  h apart (Tríbulo et  al. 2012). When 
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compared to the twice daily treatments, the number of transferable embryos with 
the two-injection protocol did not differ. A report derived from commercial embryo 
transfer data confirmed these results in beef cattle in North America (Hasler and 
Hockley 2012). However, the single- or two-injection protocol of FSH in hyaluro-
nan is not recommended for lactating dairy cattle where results have been inconsis-
tent and generally unsatisfactory.

5.4.7  Fixed-Time AI of Superstimulated Donors

Bó et al. (2006) developed a protocol for fixed-time AI in Bos taurus beef donors, 
without the need for estrus detection, by monitoring the timings of ovulations ultra-
sonically. Basically, the time of progestin device removal was delayed to prevent 
early ovulations and allow late developing follicles to “catch-up” and ovulation was 
induced with GnRH or pLH. In this protocol, follicular wave emergence was syn-
chronized with estradiol and a progestin device on random days of the estrous cycle 
(Day 0) and FSH treatments were initiated on Day 4. On Day 6, PGF was adminis-
tered in the AM and PM, and the progestin device was removed on Day 7 AM (24 h 
after the first PGF). On Day 8 AM (24 h after the removal of the progestin device), 
GnRH or pLH was administered and fixed-time AI were done 12 and 24 h later. 
Delaying the removal of the progestin device from Day 6 PM to Day 7 AM resulted 
in a higher number of ova/embryos and fertilized ova. From a practical perspective, 
fixed-time AI of donors has been shown to be useful in eliminating estrus detection 
for busy embryo transfer practitioners with no adverse effect on embryo production 
(Larkin et al. 2006).

Studies in high-producing Holstein cows (Bos taurus) in Brazil have indicated 
that it is preferable to allow an additional 12 h before removing the progestin device 
(i.e., Day 7 PM) followed by GnRH or pLH 24 h later, i.e., Day 8 PM (Martins et al. 
2012). Baruselli et al. (2006) also reported that it is preferable to remove the proges-
tin device on Day 7 PM in Bos indicus beef breeds, followed by GnRH 12 h later 
(i.e., Day 8 AM). Baruselli et al. (2006) also showed it is possible to use a single 
insemination with high-quality semen 16 h after pLH. This protocol has also been 
used successfully with sex-selected semen, except that inseminations were delayed 
by an additional 6 h i.e., 18 and 30 h after GnRH (Soares et al. 2011).

5.4.8  Semen and Semen Quality

Superstimulated donors are normally inseminated 12 and 24 h after onset of estrus 
(around 60 and 72 h after injection of PGF; Schiewe et al. 1987). However, super-
stimulation places extraordinary pressure on the capacity of frozen/thawed semen to 
fertilize multiple oocytes. As ovulation rate increases, the number of accessory 
sperm decreases, and unfertilized oocytes from superovulated cattle seldom have 
sperm attached to the zona pellucida (DeJarnette et al. 1992). However, viability 
may also be compromised; Saacke et al. (1988) showed that the number of viable 

5 Embryo Transfer Technology in Cattle



118

sperm in the lower isthmus of the oviduct is less for a shorter period of time in 
superstimulated cattle. Thus the two inseminations would appear to be warranted.

In 1988, Hawk et al. (1988) reported that insemination of superstimulated cattle 
with 4.4 billion fresh sperm resulted in a greater number of fertilized ova and higher 
fertilization rates than 70 million frozen-thawed sperm. To investigate this observa-
tion, we selected three bulls with normal spermiograms and cryopreserved their 
semen in insemination dosages of 20, 50, or 100 million sperm in 0.25 ml or 0.5 ml 
straws. When used in a single insemination at 12 and 24 h after onset of estrus in 
superstimulated heifers, there were no differences in fertilization rates (Garcia et al. 
1994). We concluded that the key was normal spermiogram when dosages of at least 
10 million motile sperm (20 million pre-freeze) were used.

Semen used in superstimulated cattle should exceed the minimum standards 
established by the American Society for Theriogenology for frozen/thawed semen 
(Barth 1993). Briefly, these are a minimum of 70% morphologically normal sperm 
and, immediately after thawing, 25% directional motility with a rate of 3/5 and a 
minimum of 60% intact acrosomes. After 2 h, directional motility must exceed 15% 
(rate 2), and percentage of intact acrosomes must exceed 40%.

5.4.9  Superstimulation for Ovum Pickup (OPU)

Although Bos indicus cattle have high antral follicle counts and are not normally 
superstimulated prior to OPU, most Bos taurus breeds are treated with a half dose 
of FSH prior to oocyte aspiration. The common approach is to synchronize follicle 
wave emergence and administer four or six intramuscular injections of FSH over 2 
or 3 days. Following a “coasting” period (with no FSH treatments) of approximately 
40 h, oocytes for in vitro maturation and fertilization are recovered from antral fol-
licles by ultrasound-guided oocyte aspiration (Blondin et al. 2002). Superstimulation 
prior to OPU has resulted in a significant increase in blastocyst production in 
Holstein donors (Vieira et al. 2014), and dilution of FSH in 0.5% hyaluronan prior 
to a single intramuscular administration has been shown to be equally efficacious 
(Vieira et al. 2015).

5.5  Estrus Synchronization in Recipients

High pregnancy rates are partially dependent upon the onset of estrus in recipients 
being within 24 h of synchrony with that of the embryo donor (Hasler et al. 1987). 
Recipients may be selected for embryo transfer by estrus detection of untreated 
animals or after drug-induced estrus synchronization. Regardless of the method 
used, timing and critical attention to estrus detection are important. Recipients syn-
chronized with PGF must be treated 12–24 h before donors because PGF-induced 
estrus occurs in 60–72  h in single-ovulating cattle (Kastelic et  al. 1990) and in 
36–48 h in superstimulated donors (Bó et al. 2002, 2006). The success of estrus 
synchronization programs is dependent on an understanding of estrous cycle 
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physiology, pharmacological agents and their effects on the estrous cycle, and herd 
management factors that reduce anestrus and increase conception rates. Treatment 
alternatives are discussed below.

5.5.1  Prostaglandin (PGF)

Prostaglandin has become the most common treatment for estrus synchroniza-
tion in cattle (Larson and Ball 1992; Odde 1990), but PGF is not effective in 
inducing luteolysis in the first 5 days of the cycle, and when luteolysis is effec-
tively induced, the ensuing estrus is distributed over a 6-day period (Kastelic 
et al. 1990). This is due to the status of the dominant follicle at the time of treat-
ment. In a two-dose PGF protocol, an interval of 10 or 11 days between treat-
ments has been used because all animals should have a responsive CL at the time 
of the second PGF. However, a 14-day interval is usually preferred for AI (Folman 
et al. 1990).

5.5.2  Progestins

Various progestins (progesterone and progesterone-like compounds) have been uti-
lized for estrus synchronization (Mapletoft et al. 2003). Progesterone prevents ovu-
lation in cattle and suppresses LH pulse frequency, which causes suppression of the 
growth of LH-dependent follicles (i.e., dominant follicle), but it does not suppress 
FSH secretion (Adams et al. 1992b). Thus, follicle waves continue to emerge in the 
presence of a functional CL. Progestins given for longer than the CL life-span (i.e., 
for 14 days or more) result in synchronous estrus upon withdrawal, but fertility is 
low (Revah and Butler 1996). Progestins used to control the estrous cycle in cattle 
have relatively less suppressive effects on LH secretion than the CL and are associ-
ated with the development of “persistent” follicles, which contain aged oocytes with 
low fertility. Although an early study indicated no effect of a CL resulting from a 
persistent follicle on pregnancy rates in recipients (Wehrman et al. 1997), Mantovani 
et al. (2005) reported reduced pregnancy rates.

To synchronize estrus, progestin devices are normally placed in the vagina for 
7 days; PGF is given 24 h before device removal, and estrus detection begins 48 h 
later. Because of the short period of progestin treatment (7 days), the incidence of 
persistent follicles is reduced. Progesterone-releasing vaginal devices are also well 
suited to protocols used to synchronize follicular development and ovulation 
(Mapletoft et al. 2003).

5.5.3  Fixed-Time Embryo Transfer (FTET)

In recipients, the need for estrus detection can be eliminated by utilizing protocols 
that have been developed for fixed-time AI in cattle (Mapletoft et al. 2003). Basically, 
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two approaches have been used: the so-called Ovsynch or Cosynch protocols utiliz-
ing GnRH (Pursley et al. 1995; Wiltbank 1997) or pLH (Martinez et al. 1999), with 
or without a progestin device (Lamb et al. 2001; Martinez et al. 2002), or estradiol 
and progesterone to synchronize follicle wave emergence and ovulation in progestin- 
treated animals (Bó et al. 2012; Mapletoft et al. 2003).

5.5.3.1  GnRH
If treatment of cattle with GnRH induces ovulation of a growing dominant follicle 
(Thatcher et al. 1993), emergence of a new follicular wave occurs approximately 
2 days later (Martinez et al. 1999). Treatment with PGF 7 days after GnRH results 
in luteal regression and ovulation of the new dominant follicle, especially when a 
second GnRH injection is given 36–56 h later (referred to as the Ovsynch protocol; 
Pursley et al. 1995). However, the Ovsynch protocol has been more efficacious in 
lactating dairy cows than in heifers. The cause for this variability is not known, but 
ovulation to the first GnRH occurred in a higher percentage of cows than heifers 
(Martinez et al. 1999; Pursley et al. 1995), and Wiltbank (1997) reported that 19% 
of heifers showed estrus before the injection of PGF making fixed-time AI difficult. 
However, the addition of a CIDR to a 7-day GnRH-based protocol improved preg-
nancy rates after fixed-time AI in heifers and improved pregnancy rates in non- 
cycling, lactating beef cows (Lamb et al. 2001).

GnRH-based protocols have been used to synchronize ovulation in recipients 
that received in  vivo-derived (Baruselli et  al. 2000, 2010; Hinshaw 1999) or 
in vitro- produced (Ambrose et al. 1999) embryos. In these studies, more recipients 
received embryos than when estrus detection was used because GnRH-based pro-
tocols do not depend on estrus detection; thus, pregnancy rates are higher than in 
controls. Prevention of early ovulations by addition of a progestin-releasing device 
to a 7-day GnRH-based protocol is usually used for FTET; Hinshaw (1999) treated 
1637 recipients with GnRH plus a progestin-releasing device and transferred 
in vivo- derived embryos, without estrus detection, with an overall pregnancy rate 
of 59.9%.

Recent studies have shown that reducing the period of follicle dominance (by 
removing the progestin device 5 days after insertion) and increasing the time from 
progestin device removal to GnRH improve pregnancy per AI in GnRH-based pro-
tocols (Bridges et al. 2008; Lima et al. 2011; Santos et al. 2010). However, due to a 
shorter interval between the first GnRH and induction of luteolysis in the 5-day 
protocol, two injections of PGF are necessary to induce complete regression of the 
GnRH-induced CL. However, Colazo and Ambrose (2011) showed that when the 
first GnRH in the 5-day Cosynch protocol was not given in heifers and a single PGF 
was administered, pregnancy rate to FTAI was not affected. We have preliminary 
evidence indicating that this modification of the 5-day GnRH-based protocol results 
in a comparable proportion of recipients receiving an embryo and becoming preg-
nant per embryo transfer as with other FTET protocols (Bó et al. 2012) or estrus 
detection (Sala et al. 2016). The two recommended protocols for FTET in bovine 
recipients using GnRH are shown in Fig. 5.4.
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5.5.3.2  Estradiol and Progesterone
As indicated earlier, treatment with estradiol and progestins has been used to syn-
chronize estrus in cattle, but Bó et al. (1995) demonstrated that estradiol treatment 
also synchronizes follicle development. In fixed-time AI protocols, a second, lower 
dose of estradiol is usually given 24 h after progestin device removal to induce LH 
release, which occurs approximately 16–18 h later, and ovulation in approximately 
24 h (Mapletoft et al. 2003). Estradiol treatment protocols are the most commonly 
used treatment to synchronize follicle wave emergence and ovulation in beef and 
dairy recipients in South America (Baruselli et al. 2010, 2011). The progestin device 
is usually removed on Day 8, and ovulation is induced by the administration of 0.5 
or 1 mg of estradiol cypionate at that time, or 1 mg of estradiol benzoate 24 h after 
progestin removal, or administration of GnRH or pLH 48 to 54 h after progestin 
removal (reviewed in Bó et al. 2002, 2012; Baruselli et al. 2010, 2011). As estrus 
detection is usually not performed, Day 9 is considered to be the day of estrus. 
When estrus detection is performed, all the recipients not in estrus by 48 h after 
progestin device removal receive GnRH. All recipients with a functional CL on Day 
17 receive an embryo; conception rates were comparable to embryo transfer 7 days 
after observed estrus. The recommended protocols for FTET in recipients using 
estradiol and progestin are shown in Fig. 5.5.

Day 0 Day 5 Day 8 Day 15

GnRH
PGF

P4 device

FTET

Day 0 Day 7 Day 9 Day 16

GnRHPGF

P4 device

FTETGnRH
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b

Fig. 5.4 Two protocols for FTET in bovine recipients using GnRH. (a) Traditional 7-day 
GnRH + P4 device protocol (GnRH plus P4 device on Day 0 and GnRH on Day 9). (b) Modified 
5-day GnRH + P4 device protocol (P4 device on Day 0 and GnRH on Day 8). Recipients with a 
CL detected by palpation or ultrasonography receive an embryo at a fixed-time (FTET) 7 days after 
GnRH. An injection of 400 IU of eCG may also be given to Bos indicus recipients or suckled Bos 
taurus recipients at the time of P4 device removal
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5.5.3.3  Use of eCG to Improve Pregnancy Rates in Recipients
A common strategy to increase pregnancy rates in pasture-managed beef recipients 
in South America is the addition of 400 IU of eCG on either Day 5 or Day 8 of the 
estradiol/progestin treatment protocol. Overall, 75–85% of the recipients treated 
with eCG receive an embryo (compared to 50% or less with simple PGF synchroni-
zation), progesterone concentrations at the time of embryo transfer are high, and 
conception rates following transfer exceed 50% (reviewed in Baruselli et al. 2010, 
2011; Bó et al. 2012). The efficacy of the estradiol benzoate, progestin, and eCG 
treatment protocol for FTET has been confirmed in several different parts of the 
world in more than 15,000 recipients (Argentina, Bó et  al. 2005; Brazil, Nasser 
et al. 2011; China, Remillard et al. 2006; Mexico, Looney et al. 2010). In each of 
these studies, treatment with eCG increased the number of recipients receiving an 
embryo resulting in higher pregnancy rates.

The use of eCG in GnRH-based protocols has also been evaluated. In a Canadian 
study designed to evaluate the potential use of eCG in beef cattle recipients synchro-
nized with GnRH/progestin for FTET (Small et al. 2007), recipient selection rates 
did not differ, but in a Colombian study (Mayor et  al. 2008), eCG significantly 
increased pregnancy rates following FTET in recipients treated with the GnRH/
progestin protocol.

In summary, the addition of eCG to estradiol- or GnRH-based protocols which 
included the use of progestin devices resulted in increased pregnancy rates depend-
ing on the type, body condition, and cyclicity of the recipients. However, treatment 
with eCG may not improve pregnancy rates in Bos taurus recipients managed under 
more optimal conditions.

5.5.3.4  Other Treatments to Increase Pregnancy Rates in Recipients
Several studies have investigated the relationship between circulating progesterone 
concentrations and pregnancy rates in recipients (reviewed in Baruselli et al. 2010; 

Day 0 Day 8 Day 17

PGF
0.5 mg ECP

P4 device

FTET 2 mg EB

Fig. 5.5 Simplified estradiol-based synchronization protocol for FTET in bovine recipients. On 
Day 0, recipients receive a P4 device and estradiol benzoate (EB). On Day 8, P4 devices are 
removed, and PGF is administered. Ovulation is induced with estradiol cypionate on Day 8 (sim-
plified) or EB on Day 9. Recipients with a CL detected by palpation or ultrasonography receive an 
embryo at a fixed-time (FTET) on Day 17. An injection of 400 IU of eCG may also be given to Bos 
indicus recipients or suckled Bos taurus recipients at the time of P4 device removal. If some estrus 
detection is implemented with tail patches or tail paint, recipients not showing estrus by 48 h after 
P4 device removal receive GnRH at that time
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Carter et al. 2008). However, the use of supplementary progesterone has resulted in 
inconsistent effects on pregnancy rates. Generally, the beneficial effects of increas-
ing circulating concentrations of progesterone seem to be more evident when preg-
nancy rates in untreated recipients were lower than expected. An alternative strategy 
is to create an accessory CL by induction of ovulation of the first-wave dominant 
follicle, around the time of embryo transfer (reviewed in Thatcher et  al. 2001). 
Again, results have been inconsistent; in Bos indicus recipients, treatment with 
human chorionic gonadotrophin (hCG) on Day 7 increased progesterone concentra-
tions (Marques et al. 2002), and treatment with GnRH (Rodrigues et al. 2003) or 
GnRH, hCG, and pLH or a progestin device (Marques et al. 2003) at the time of 
embryo transfer resulted in increased pregnancy rates. However, in another study 
involving Bos indicus-cross recipients synchronized with the progestin/estradiol 
plus eCG protocol, pregnancy rates were not affected by treatment with hCG or 
GnRH at the time of FTET (Tribulo et  al. 2005). Small et  al. [2004] were also 
unable to improve pregnancy rates in Bos taurus recipients treated with GnRH or 
pLH on Days 5 or 7 after estrus. In a more recent study, administration of 1000 IU 
hCG at the time of embryo transfer (Wallace et al. 2011) resulted in higher serum 
progesterone concentrations in recipients with lower body condition scores but not 
with higher body condition scores. The authors concluded that giving hCG at the 
time of embryo transfer increased the incidence of accessory CL and higher serum 
progesterone concentrations which resulted in higher pregnancy rates in recipients 
with lower body condition scores. Lower embryonic losses were also observed in 
recipients that received GnRH 2 days prior to receiving in vitro-produced embryos 
(García Guerra et al. 2016).

5.5.4  Management Factors

The two management factors that determine the success or failure of an estrus syn-
chronization program are nutrition (body condition score) and postpartum interval. 
If cows lose weight during pregnancy, the onset of estrous cycles after calving will 
be delayed, while cows that are fed adequately during pregnancy but fail to gain 
weight between calving and breeding will cycle but have reduced conception rates 
(Carvalho et al. 2014b) and may also have reduced pregnancy rates after receiving 
a viable embryo by embryo transfer (Bó et al. 2005). In a field study, pregnancy 
rates were significantly higher in beef recipients scoring 3 and 4 than in those scor-
ing 1, 2 (thin), or 5 (obese; reviewed in Mapletoft 1986). Therefore, the nutritional 
status of recipients must be evaluated before using them for embryo transfer.

5.6  Embryo Recovery

In early commercial bovine embryo transfer programs, embryos were collected sur-
gically 4 days after estrus (reviewed by Betteridge 2003). However, three methods 
of nonsurgical embryo recovery were described in 1976 (Drost et al. 1976; Elsden 

5 Embryo Transfer Technology in Cattle



124

et al. 1976; Rowe et al. 1976). Nonsurgical techniques are preferred as they are not 
damaging to the reproductive tract, are repeatable, and can be performed on the 
farm. Briefly, the donor is restrained, and the rectum is evacuated of feces and air. 
The number of CL is usually estimated at this time or just prior to ova/embryo 
recovery. The perineal region and vulvar labia are washed thoroughly and dried, and 
the tail is tied out of the way. Embryo recovery is not attempted until a satisfactory 
epidural anesthetic is completed.

Nonsurgical embryo collections involve the passage of a cuffed catheter through 
the cervix and into one of the uterine horns on Days 6–8 after estrus. Once the cath-
eter is in place, the cuff is inflated with collection medium. Although original reports 
involved the use of two-way and three-way Foley catheters (Rowe et al. 1976), the 
two-way Rusch catheter has been preferred by many practitioners (Schneider and 
Hahn 1979). The catheter is stiffened for passage through the cervix by a stainless 
steel stilette, which locks into the Luer-Lok fittings. The Rusch catheter is long 
enough for large cows and is stiff enough that it can be easily threaded down the 
uterine lumen. Several other catheters are now available from embryo transfer sup-
pliers, but they are really modifications of the Rusch catheter.

Basically, there are two methods of embryo collection (Mapletoft 1986): the 
closed-circuit continuous or interrupted flow system and the interrupted-syringe 
technique. However, any combination of these two techniques is possible. It must be 
recognized that each system has advantages and disadvantages relative to the other. 
With the closed system, it is easier to maintain sterility, and there is less chance of 
losing medium and consequently, embryos. However, it is cumbersome and the 
extra tubing provides extra potential for contamination by either microbes or chemi-
cals. With the interrupted-syringe method, it is possible to use fully disposable 
equipment and to search for embryos while the collection is in progress.

The embryo recovery medium is normally prepared in advance. Dulbecco’s 
phosphate-buffered saline (PBS) or other simple salt solutions are normally pre-
pared in 500–1000 ml quantities for embryo collection. In addition, quantities of 
heat-inactivated fetal calf serum (FCS) and antibiotic/antimycotic solution for each 
volume of PBS may be kept frozen. The holding medium, containing a higher con-
centration of serum, is normally held in a “plastic on plastic” syringe for use (an 
antioxidant on the rubber plunger in plastic syringes has been shown to be toxic to 
embryos; Hasler 2003). Holding medium is normally passed through a disposable 
0.22 μm Millipore filter prior to use, but the first 4–5 ml should be discarded as it 
may also affect embryo survival. Ready-made embryo collection and holding media 
are now available commercially; they have been filtered and are ready for use. 
However, if media contain animal products, e.g., serum or BSA, they must be refrig-
erated. Recently, collection and holding media that do not contain animal products 
have become available (Hasler 2010).

Temperature does not seem to be critical for embryo survival, provided extremes 
are avoided; room temperature seems satisfactory. Similarly, sterility is not possi-
ble, but one should attempt to be clean. Sterilization with chemicals is more likely 
to kill embryos than microbial contaminants. As a routine, embryos should be 
passed through ten washes of fresh, sterile medium prior to transfer or freezing to 
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remove all contaminants. Certain infectious agents such Bovine herpesvirus have 
been shown to “stick” to the zona pellucida, so two trypsin treatments after wash 
number five is often recommended, followed by the final five washes (Singh 1985).

5.7  Embryo Handling

Embryos are normally held in the same or a similar medium to that in which they 
were collected. Media must be buffered to maintain a pH of 7.2–7.6 and have an 
osmolarity of around 300 mos/L. Dulbecco’s PBS or more complex media with the 
HEPES buffer and enriched with FCS or BSA and antibiotics are normally used in 
the field. Embryos are located with a stereoscopic dissecting microscope at 10× 
magnification after passing the collection medium through a filter with pores that 
are approximately 50–70 μm in diameter (Mapletoft 1986). Although embryos are 
usually transferred as soon as possible after collection, it is possible to maintain 
embryos in holding medium for several hours at room temperature or to cool bovine 
embryos in holding medium and maintain them in the refrigerator for 2 or 3 days. 
As a final alternative, embryos may be cryopreserved. Embryo collection, holding, 
and freezing media that are free of animal products not only eliminates the need for 
refrigeration but also increase biosecurity (Hasler 2010).

5.7.1  Embryo Evaluation

Evaluation of bovine embryos must be done at 50–100× magnification, with the 
embryo in a small culture dish. The IETS Manual describes a numerical system for 
classification of embryo developmental stage, ranging from 1 (single-cell zygote) to 
8 (hatched blastocyst), and quality, from 1 (good and excellent) to 4 (dead). It is 
important to be able to recognize the various stages of development and to compare 
these with the developmental stage that the embryo should be based on the days 
from estrus. Often a decision as to whether an embryo is worthy of transfer will 
depend on the availability of a recipient. Fair-quality embryos should be transferred 
fresh, while good and excellent quality embryos have a high probability of surviv-
ing cryopreservation. The IETS considers the export of poor- and fair-quality 
embryos to be improper.

The overall diameter of the bovine embryo is 150–190 μm, including a zona pel-
lucida thickness of 12–15 mm. The overall diameter of the embryo remains virtually 
unchanged from the one-cell stage to blastocyst stage. The best predictor of an 
embryo’s viability is its stage of development relative to what it should be on a given 
day after ovulation. An ideal embryo is compact and spherical. The blastomeres 
should be of similar size with a homogenous color and texture. The cytoplasm 
should not be granular or vesiculated, and the perivitelline space should be clear and 
contain no cellular debris. The zona pellucida should be uniform, should neither be 
cracked nor misshapen, and should not contain debris on its surface. Embryos of 
good and excellent quality (IETS quality code 1) and at the developmental stages of 
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late morula to blastocyst yield the highest pregnancy rates, fresh or frozen/thawed. 
The IETS Manual has a complete library of embryo photographs.

5.8  Embryo Transfer

Transfer of high-quality embryos in cattle will result in high pregnancy rates provid-
ing that estrus in the donor and recipient occurred within 24 h of each other (Hasler 
et al. 1987). Alternately, recipients must be synchronous with the stage of develop-
ment of embryos that had been previously cryopreserved. Bovine embryo transfers 
were initially done surgically, while most are done today using nonsurgical methods 
(Rowe et al. 1980; Wright 1981). Nonsurgical embryo transfer techniques involve 
the use of specialized embryo transfer pipettes. After confirming synchrony of estrus, 
the recipient is restrained, and the rectum is evacuated of feces and air. At that time, 
the presence and side of a functional CL is confirmed. An epidural anesthetic is 
administered, and the vulva is washed with water (no soap) and dried with a paper 
towel. The embryo is placed in 0.25 ml straw between at least two air bubbles and 
two columns of medium, and the straw is placed in the embryo transfer pipette. Care 
is taken to insure that the straw engages the sheath tightly so as to avoid leakage. The 
sheath is coated with sterile, nontoxic obstetrical lubricant, and the sheathed pipette 
is passed through the vulvar labia while avoiding contamination. The embryo is 
placed in the uterine horn adjacent to the ovary bearing the CL by passing the pipette 
through the cervix, very similar to AI. However, an attempt is usually made to pass 
the pipette at least halfway down the uterine horn. Care must be taken to prevent 
trauma to the endometrium. The embryo is deposited slowly and firmly, while the tip 
of the transfer pipette is withdrawn slightly. Practice and dexterity seem to improve 
one’s ability to achieve high pregnancy rates suggesting that trauma to the endome-
trium may be a limiting factor. Stimulation of the cervix or inadvertent introduction 
of bacterial contaminants does not seem to affect pregnancy rates.

5.9  Summary and Conclusions

Commercial embryo transfer in cattle has become a well-established industry. 
Although a very small number of offspring are produced on an annual basis, its 
impact is large because of the quality of animals being produced. Embryo transfer 
is now being used for genetic improvement, especially in the dairy industry, and 
most semen used today comes from bulls that have been produced by embryo trans-
fer. An even greater benefit of bovine embryo transfer may be that in vivo-derived 
embryos can be made specified pathogen-free by washing procedures, making them 
ideal for disease control programs or in the international movement of animal genet-
ics. Techniques have improved over the past 40 years so that frozen-thawed embryos 
can be transferred to suitable recipients as easily and simply as AI. A combination 
of embryo transfer with proven cows inseminated with semen from proven bulls and 
industry-wide AI is a common commercial application of bovine embryo transfer.
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6ET-Technologies in Small Ruminants

Sergio Ledda and Antonio Gonzalez-Bulnes

Abstract
In the last decades small ruminants have become increasingly important, and 
nowadays sheep and goat are continuously increasing in the number of breeds and 
their geographic distribution. An important feature of small ruminants is that they 
can live and produce on land that is unfavorable for other forms of agriculture. 
The increase in small ruminant breeding has been supported more recently by the 
development and improvement of assisted reproductive technologies  (ARTs). 
However, while some ARTs have reached widespread application, including 
estrus induction, estrus synchronization, and artificial insemination, other ARTs, 
such as superovulation and embryo transfer, in  vitro embryo production, and 
embryo cryopreservation, are only rarely used. Multiple ovulation and embryo 
transfer (MOET) programs in small ruminants are usually restricted to few coun-
tries and still remain experimental. The success of this technique is unpredictable 
due to many limiting factors that contribute to the overall results, such as the 
reproductive seasonality with a long, naturally occurring anestrus period, high 
variability of the superovulatory response, fertilization failures, and the need of 
surgery for collection and transfer of gametes and embryos. However recent prog-
ress in better understanding of the follicular wave patterns, the elucidation of fol-
licular dominance, and the integration of this information into superovulation 
treatments are instrumental in predicting good responders and reducing variabil-
ity. Protocols that control follicular dominance have been developed to allow the 
initiation of precise hyperstimulation protocols which are designed to recruit and 
stimulate a homogeneous pool of small follicles that are  gonadotrophin respon-
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sive, thereby enhancing superovulatory response and embryo yields. Significant 
improvements in the development of nonsurgical techniques are paving the way 
to reducing stress and costs of donors and recipient management, indicating the 
possible repeated use of individual donors. In addition, the progress with IVP 
embryos generated from adult and juvenile animals, combined with the genomic 
analysis of economically productive tracts, is opening new perspectives and could 
be instrumental for improving MOET programs in small ruminants.

6.1  Introduction

In the last decades small ruminants have become increasingly important, and nowa-
days sheep and goat breeding plays a crucial, economic and social role, as shown by 
the continuous increase in the number of breeds and their geographic distribution. 
An important feature of small ruminants is that they can live and produce on land 
that is unfavorable for other forms of agriculture.

According to FAO (faostat.fao.org, 2013), the number of sheep and goats in the 
world was 1169 and 996 million, respectively. Sheep and goats are shown to have a 
global distribution with emphasis in Africa and America with 848 and 929 million, 
respectively, whereas in Asia, Europe, and Oceania, 173 million sheep and 67 mil-
lion goats were held. The global economic value of sheep and goat milk was 5.6 and 
6.4 billion USD and for meat it was 37 and 25 billion, respectively. International 
sheep meat trade is limited (around 7% of the total production), and the bulk of this 
trade consists of export from the southern hemisphere (New Zealand has 47% and 
Australia has 36% of the total) to the European Union, North Asia, the Middle East, 
and North America. In many parts of the world, particularly in temperate regions, 
meat from sheep and goats is the most consumed product, and its importance as 
source of high-quality protein is steadily increasing.

The increase in small ruminant breeding has been supported in the last decades 
by the development and improvement of assisted reproductive technologies 
(Armstrong and Evans 1983; Loi et al. 1998). The control of reproduction and its 
modulation is an efficient tool for achieving genetic progress in these productive 
species.

While some assisted reproductive technologies (ARTs) have reached widespread 
application, including estrus induction, estrus synchronization, and artificial insemi-
nation, other ARTs, such as superovulation and embryo transfer, in vitro embryo pro-
duction, and embryo cryopreservation, are only rarely used compared to cattle. 
Multiple ovulation and embryo transfer (MOET) programs in small ruminants are 
usually restricted to few countries and still remain experimental, even if this technique 
is considered an efficient and provides a low-cost option to exporting genetic material 
across international boundaries. However, the success of this technique is rather unpre-
dictable due to many factors that contribute to the overall results, and many practitio-
ners consider MOET one of the most frustrating ART in small ruminants.
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The main limitation to field application in small ruminants is the reproductive 
seasonality with a long, naturally occurring anestrus period, high variability of the 
superovulatory response, fertilization failures, and the need of surgery for collection 
and transfer of gametes and embryos (reviewed by Cognié 1999; Cognié et  al. 
2003). This unpredictability combined with high costs of the pharmacological stim-
ulation treatments have prevented large-scale use of MOET in sheep and goats, and 
up to now this technique is considered as being not enough robust to be applicable 
in large-scale breeding systems.

New prospects offered by in vitro embryo production (IVP) and repeated ovum 
pick-up from live adult and juvenile female donors are suggesting that IVP technol-
ogy can be used as an alternative system to MOET programs, thus moving this 
technology from the research status in the laboratory to the field (Cognié et al. 2004; 
Paramio and Izquierdo 2014). Recent improvements of embryo production and 
freezing technologies could allow a wider propagation of valuable genetics in small 
ruminant populations and could also be used for establishing flocks without risk of 
disease transmission. In addition, they can make a substantial contribution to the 
preservation of endangered species or breeds.

The aim of this review is to provide an overview of some recent developments in 
MOET programs in small ruminants, updating recent information regarding estrus 
synchronization methods, follicular wave synchronization, and/or ovulation induc-
tion techniques during superovulatory treatments in ewes, as well as embryo collec-
tion and transfer techniques. The possibility offered by the generation of 
in vitro-produced embryos obtained from selected adult and juvenile donors will be 
also discussed with regard to the possibility offered by these new techniques to 
accelerate genetic progression of highly selected valuable animals.

6.2  Management of Reproductive Activity and Control 
of the Ovarian Cycle in Donor and Recipient Females

Sheep and goats are characterized by seasonal cycles of reproduction, consisting of 
a breeding season (which usually begins in late summer or early autumn in response 
to decreasing day length and ends in the late winter or early spring in response to 
increasing day length) and an anovulatory period (which covers the late spring to 
midsummer), which are separated by transition periods.

The breeding season is composed of a succession of sexual cycles (named estrous 
cycles since they are characterized by sexual receptivity (named estrus from the 
Latin word estruus), in the period preceding ovulation. The estrous cycles in small 
ruminants average 17 days in sheep and 21 days in goats and include the follicular 
phase and the luteal phase. The objective of the ovarian cycle is the development of 
a follicle able to ovulate and release an oocyte competent to be fertilized and able to 
develop in a viable embryo and, afterward, the maintenance of a corpus luteum 
competent for maintaining pregnancy.

Hence, the adequate management of reproductive activity and the ovarian cycle is 
indispensable in both donor and recipient females involved in MOET programs. The 
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main objective is to render the ovarian follicular population responsive to the gonado-
trophin treatments in a healthy and large number and, as in the case of in vivo embryo 
production, to control the timing of ovulation in donor females. The precise control of 
the timing of ovulation and the availability of corpora lutea competent for maintaining 
pregnancy are the main objectives in recipient females. Several methods have been 
proposed to regulate seasonality and control ovarian activity in small ruminants.

6.2.1  Administration of Progesterone  
and Analogues (Progestagens)

The most widely used methods for synchronization of estrous cycle and ovulation 
are based on the administration of progesterone or its analogues (progestagens; the 
most common being fluorogestone acetate and medroxyprogesterone acetate). These 
treatments simulate the action of natural progesterone produced by the corpus luteum 
during the luteal phase of the cycle and allow control of LH secretion from the pitu-
itary gland and thus prevent occurrence of ovulation. Removal of the substances 
leads to the appearance of a follicular phase with the growth of a preovulatory follicle 
and the occurrence of estrus and ovulation. The first successful protocol was devel-
oped in the early 1960s for sheep and consisted of intravaginally inserted sponges 
impregnated with progestagens (Robinson et al. 1967). The treatment was found to 
be equally effective for inducing ovulation in both the breeding season and the 
anovulatory period, with a high degree of synchronization in females treated at the 
same time. Thereafter, the method was found to be useful also for estrus synchroni-
zation in goats (Ritar et al. 1984). An alternative to intravaginal sponges is the con-
trolled internal drug release (CIDR) dispenser, which is made with an inert silicone 
elastomer usually impregnated with natural progesterone (Welch et al. 1984).

The use of either progesterone, fluorogestone acetate, or medroxyprogesterone 
acetate seems not to affect superovulatory yields (Bartlewski et  al. 2015); con-
versely, the protocol of administration seems to have a determinant effect (Gonzalez- 
Bulnes et al. 2004b).

Protocols for the administration of progesterone and progestagens aim to exceed 
the life span of the corpus luteum in the ovary and last for 14–16 days in sheep and 
goats, respectively. However, plasma concentrations rise during the first 48 h after 
insertion (Robinson et al. 1967), and, at the end of the treatment, the levels may 
even be too low for suppressing LH secretion effectively (Kojima et al. 1992) which 
in turn may lead to inadequate follicular growth with the appearance of persistent 
large estrogenic follicles (Johnson et  al. 1996; Leyva et  al. 1998; Viñoles et  al. 
1999). In superovulatory treatments, the appearance of persistent large follicles has 
a dramatic negative effects on oocyte and embryo yields (Gonzalez-Bulnes et al. 
2004b), and low plasma levels of progesterone/progestagens during the superovula-
tory treatment could be avoided by the use of two CIDRs/sponges from early onward 
(Thompson et al. 1990; Dingwall et al. 1994).

However, the use of long-term treatments and high doses has been associated 
with alterations in final follicle growth (Gonzalez-Bulnes et al. 2005), in patterns of 
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the LH release (Scaramuzzi et  al. 1988; Gordon 1975; Menchaca and Rubianes 
2004), in the quality of ovulations (Killian et al. 1985; Gonzalez-Bulnes et al. 2005; 
Viñoles et al. 2001), and/or in sperm transport and survival in the female reproduc-
tive tract (Hawk and Conley 1971). An alternative would be the use of short-term 
treatments (6-day length), which would avoid the abovementioned shortcomings 
caused by the use of long-term and high-dose treatments (Ungerfeld and Rubianes 
1999; Menchaca and Rubianes 2004; Letelier et al. 2009). However, a 6-day treat-
ment period is shorter than the half-life of a possible corpus luteum in the ovaries; 
thus it is necessary to apply a single dose of prostaglandin F2α (PGF2α) or its ana-
logues for inducing regression of the corpus luteum.

6.2.2  Administration of Prostaglandins  
and Analogues (Prostanoids)

The objective of the administration of PGF2α or its analogue (prostanoids) is to 
eliminate the corpus luteum and, in consequence, to induce growth of a follicular 
phase with ovulation (Abecia et al. 2012). Treatments with prostaglandin are there-
fore only effective in cycling animals with a functional corpus luteum. In associa-
tion with the short-term treatment with progesterone/progestagens, the goal is to 
remove the corpus luteum, to allow the appearance of the follicular phase. Treatment 
with PGF2α alone for estrus synchronization in a group of females requires two 
injections 9–10 days apart, thereby assuring that nearly all animals will be in mid-
luteal phase at second PGF2α dose and thus will respond with estrus behavior and 
ovulation. This treatment is effective in synchronizing estrus, but its practical appli-
cation has been limited by reduction in fertility when compared to progestagen 
sponges (Killian et al. 1985; Scaramuzzi et al. 1988). However, most of the animals 
treated at 9–10 days intervals are in the midluteal phase of the estrous cycle, which 
coincides with a follicular wave with reduced fertility. Treatments during the early 
luteal phase (achieved by two doses of PGF2α 5–6 days apart) may be an adequate 
alternative for synchronizing estrus (Contreras-Solis et al. 2009a, b).

PGF2α-based treatments were implemented in MOET protocols by Mayorga 
et  al. (2011) who showed that it is possible to produce high enough numbers of 
transferable embryos during natural estrus induced by PGF2α without the use of 
progestagen sponges.

6.2.3  Use of Melatonin

The discovery of the melatonin function in photoperiod-dependent breeding ani-
mals opened up new ways to control reproduction in these species, by inducing 
changes in the function of the photoperiod and the annual pattern of reproduction. 
Administration of melatonin could simulate the females during the reproductive 
season, but the effectivity of the synchronization obtained by this treatment and 
efficacy in increasing the superovulation response is still under debate. In fact, it has 
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been shown (McEvoy et al. 1998) that a melatonin treatment of embryo donor and 
recipient ewes during anestrus affects their endocrine status, but not the ovulation 
rate, embryo survival, or pregnancy. On the other hand, Zhang et al. (2013) reported 
that the number of corpora lutea in ewes with subcutaneous 40 or 80 mg melatonin 
implants was significantly higher than that in the control group (p < 0.05). Similarly, 
the number of recovered embryos from ewes having received subcutaneous 40 or 
80 mg melatonin implants was higher than in the control group (p < 0.05). After 
transfer of embryos collected from 40  to 80 mg melatonin-treated donors, preg-
nancy and birth rates were significantly increased compared to control ewes.

Melatonin implants inserted 3 months prior to the superovulatory treatment in 
aged high-prolificacy Rasa Aragonesa ewes (Forcada et al. 2006) did not improve 
the superovulation rate but was associated with the recovery of embryos with a bet-
ter viability compared to controls and an increase in the number of blastocysts. 
These blastocysts were also more viable after cryopreservation. Moreover, a mela-
tonin treatment reduced the number of nonviable (degenerate and retarded) embryos.

6.3  Induction of Superovulation by Exogenous 
Gonadotrophin Treatments

The superovulatory gonadotrophin treatment aims to increase the number of follicles 
growing to the preovulatory stage and ultimately yields a higher ovulation rate. 
Administration of gonadotrophins is concurrent with the last days of a progestative 
treatment to avoid premature ovulations and to synchronize ovulations. The first 
gonadotrophin protocols consisted of a single high dose of equine chorionic gonado-
trophin (eCG). However, such protocol was associated with high variability and a 
high inconsistency of the ovulatory response in successive treatments (Cognié 1999).

Superovulatory protocols have mainly been based on multiple doses of FSH, 
administered twice daily, due to the short half-life of the hormone. A superovulatory 
treatment induces the growth of a high number of follicles, but the supply of large 
amounts of exogenous gonadotrophins necessary to achieve a superovulatory 
response may be associated with detrimental effects. There is evidence showing that 
the response to superovulatory treatments is associated with alterations in follicular 
development, oocyte maturation, and/or ovulation failures similar to other ruminants 
(Rubianes et al. 1997). Thus the number of transferable embryos obtained after a 
superovulatory treatment can sometimes be disappointingly low (Cognié 1999). The 
main causes of the decrease in viability of embryos collected from superovulated 
ewes can be related to alterations in follicular-oocyte competence, changes in the 
periovulatory and preimplantation endocrine patterns, and decreased intrinsic devel-
opmental capacity of the embryos and/or negative effects from the uterine environ-
ment (Gonzalez-Bulnes et al. 2004b). Some of these alterations are common to all 
superovulatory treatments, but some factors like the source of the gonadotrophin 
preparation, its purity, and the way of administration affect the final outcome.

Source and purity of the gonadotrophin preparations have been identified as main 
factors affecting the ovulatory response mainly due to the variable LH contents 
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(Lindsell et  al. 1986). Some researchers have employed a recombinant follicle- 
stimulating hormone agonist (Rutigliano et al. 2014) for avoiding the presence of 
variable contamination with LH. High LH contents stimulate a higher number of 
follicles to grow, but such follicles regress during the treatment or are unable to ovu-
late (Rubianes et al. 1995; González-Bulnes et al. 2000a), which are possibly related 
to saturation of the LH receptors in theca and/or granulosa cells as described in cattle 
(Boland et  al. 1991). These observations have favored the use of highly purified 
gonadotrophins, but one has to keep in mind that very low amounts of LH at the end 
of treatment may also induce lower ovulation rates and a higher incidence of fertil-
ization failures (Picton et al. 1990; Cognié 1999). These aberrations may be reduced 
by inducing ovulation via appropriate drugs (i.e., GnRH; Menchaca et al. 2010).

The protocol of administration of gonadotrophins is also critical for the ovula-
tory response. Some protocols use constant dosages instead of decreasing dosage 
regimens (step-down). However, mean ovulation rate and mean numbers of recov-
ered and viable embryos are usually higher in the step-down approach, which is 
closer to the physiological situation in which FSH secretion decreases during non- 
stimulated follicular phases (Gonzalez-Bulnes et al. 2004b). However, administra-
tion of high doses of nonphysiological FSH may be associated with the above 
limitations; the use of lower doses of FSH, although yielding lower ovulatory rates, 
favors embryo viability and is compatible with the application of repetitive treat-
ments (Bruno-Galarraga et al. 2014).

The complexity of treatments with several dose of FSH has favored research on 
the use of combined treatments such as single eCG/FSH shots for in vitro embryo 
production (Gibbons et al. 2007; Forcada et al. 2011). However, this protocol yielded 
a low number of transferable embryos when applied in vivo (Cueto et al. 2011).

6.4  Individual and Ovarian Factors Affecting 
Superovulatory Response

The number of transferable embryos obtained after a superovulatory treatment of 
donor females, in small ruminants like in other species, is characterized by high 
individual variability, which is actually a limiting factor in MOET programs. The 
number of transferable embryos is dependent on the follicular growth, the ovula-
tion, and the viability of the embryos collected in response to the hormonal treat-
ment for inducing a superovulatory response (Gonzalez-Bulnes et  al. 2004b; 
Menchaca et al. 2010).

Intensive research activities developed during the past decade have  identified 
several features that affect the ovarian status at the onset of the superovulatory 
treatment.

Briefly, the ovulation rate is positively related to the number of small 
gonadotrophin- responsive follicles (2–3 mm in size) at the first gonadotrophin dose, 
in both sheep (Brebion et  al. 1990; González-Bulnes et  al. 2000a) and goats 
(Gonzalez-Bulnes et  al. 2003a). However, the total number of embryos and their 
viability are closer related to the category of follicles 3 mm in size in sheep and 4 mm 
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in goats; a higher number of smaller follicles usually correlates with more degener-
ated embryos. This finding may indicate that these follicles can grow and ovulate in 
response to the gonadotrophin treatment, but are not sufficiently matured to develop 
into a viable embryo because the recruitment might have required more time to com-
plete maturation prior to exposure to a preovulatory LH surge and ovulation. On the 
other hand, follicles larger than 3 mm in diameter might be in an adequate stage of 
development to support growth and release of a healthy oocyte. This hypothesis is 
supported when considering that such follicles are the main source of estradiol and 
inhibin A (Gonzalez-Bulnes et al. 2003b, 2004a), which are two well-known markers 
of the follicular status (Ireland and Roche 1983; Campbell et al. 1995).

The final number of transferable embryos is affected by the presence or absence 
of a large follicle (Gonzalez-Bulnes et al. 2002a, 2003a). This effect is thought to be 
related to the dominant effects, since the presence of a large follicle at the first gonad-
otrophin injection (or two in case of codominance effects; Veiga-Lopez et al. 2006a) 
determines both the number of corpora lutea and the total number of recovered 
embryo derived from small follicles, 2–3 mm in diameter (Veiga-Lopez et al. 2005). 
In the absence of a large follicle, ovulation rate and the number of total embryos are 
related to the number of follicles 3–5 mm in diameter, suggesting that dominant fol-
licles impair the development of gonadotrophin-dependent follicles (4–5  mm in 
size). Such dominance effects are primarily systemic, but there are also local effects, 
exerted by direct action, which are independent from systemic pathways through 
FSH modulation, on neighboring follicles (Gonzalez-Bulnes and Veiga-Lopez 2008).

Moreover, there is evidence that the presence of large follicles modulates the tim-
ing of the preovulatory LH surge and ovulation ultimately inducing a shorter period 
for final maturation and ovulation of smaller follicles (Veiga-Lopez et  al. 2006a, 
2008a). Some of the subordinate follicles may even grow to preovulatory size, but 
ovulation is disturbed or impeded (Veiga-Lopez et  al. 2006b). The persistency of 
these follicles beyond the ovulation period contributes to decreased embryo yields by 
affecting rates of fertilization and viability in the oocytes from other follicles.

The presence or absence of a functional corpus luteum at the time of superovula-
tion induction has a significant effect on oocyte and embryo yields. In the breeding 
season, the presence of a corpus luteum (CL) at the beginning of the progestagen 
treatment and its persistency at the start of a subsequent gonadotrophin treatment 
affect the final number of transferable embryos, likely by interaction with the domi-
nant follicles. Ewes bearing a CL at the first gonadotrophin injection have a lower 
rate of degenerated embryos and show fewer deleterious effects resulting from the 
presence of a dominant follicle (Gonzalez-Bulnes et al. 2002b, 2005).

6.5  Strategies for Selection and Preparation  
of Donor Females

The effects of the ovarian status on the superovulatory response after the gonadotro-
phin treatment suggest (for ethical, technical, and economic reasons) the possibility 
of selecting females in adequate conditions prior to treatment and/or attempting to 
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defining adequate ovarian status. Moreover, the high individual variability in the 
response to superovulatory treatments is also associated with a high intraindividual 
repeatability in response to successive superovulatory treatments (Bari et al. 2001; 
Ptak et  al. 2003; Bruno-Galarraga et  al. 2014), which suggest the possibility of 
applying predictive measures for preselection of ewes with high ovulatory responses.

A predictive evaluation of the superovulatory response may be attempted by 
evaluating the ovarian status directly by ovarian imaging (ultrasonography) or indi-
rectly by hormonal analyses. The use of high-resolution ultrasonography (probes 
with a frequency of 7.5 or higher) is useful for determining the presence or absence 
of large follicles and corpora lutea and the number of gonadotrophin-responsive 
follicles and their growth during gonadotrophin treatment (Gonzalez-Bulnes et al. 
2002c, 2004b). The use of Doppler ultrasonography for examination of follicle 
blood flow on the final day of the superovulatory treatment appears to be predictive 
with regard to number and percentage of unfertilized oocytes (Oliveira et al. 2014).

Hormonal assays are a major tool in the evaluation of follicular hormones, 
including estradiol, inhibin, and, more recently, anti-mullerian hormone (AMH). 
The high correlation observed between the growth pattern of follicles yielding via-
ble oocytes and the plasma profile inhibin A, rather than with E2, favors inhibin A 
measurement for surveillance of ovarian functionality in stimulated cycles of sheep 
(Gonzalez-Bulnes et  al. 2002a; Veiga-Lopez et  al. 2008b) and goats (Gonzalez- 
Bulnes et al. 2004c). Measurement of AMH levels is predictive of the follicular pool 
(Lahoz et al. 2014; Torres-Rovira et al. 2014) and therefore of the ovarian response 
to FSH stimulation. High numbers of oocytes are collected from lambs with high 
level of AMH, and after in vitro fertilization and culture development to blastocysts, 
the number of oocytes is higher from these animals than those derived from lambs 
with low levels of AMH (McGrice et  al. 2016). Moreover, the measurement of 
AMH in lambs is promising for discriminating high and low responders (Torres- 
Rovira et al. 2014).

Preselection of ewes with high ovulatory responses may also be performed via 
exogenous FSH ovarian reserve tests (EFORTs). EFORTs are based on the admin-
istration of a single-shot treatment and the evaluation of subsequent follicular devel-
opment (Torres-Rovira et al. 2014). A single eCG dose has been reported to be a 
useful tool to discriminate populations of prolific carriers from populations of non- 
prolific carriers in adult ewes (Kelly et  al. 1983) and in prepubertal ewe lambs 
(Davis and Johnstone 1985; Gootwine et al. 1989, 1993). The use of a single-shot 
FSH/eCG is practical and cost-efficient for choosing donors with putatively high 
ovarian responses for a cost-efficient eCG treatment (Bruno-Galarraga et al. 2015).

Another approach for optimizing superovulatory yields in a group of females is 
the preparation of adequate ovarian conditions as determined by the presence of 
corpora lutea, the absence of large follicles, and/or a high number of gonadotrophin- 
responsive follicles. The presence of corpora lutea may be induced by pre- 
synchronization of the cycle with two prostaglandin doses and starting the 
progestagen treatment in the early luteal phase. The follicular status may be modi-
fied via direct ablation of the follicle (Gonzalez-Bulnes et al. 2004b), or the use of 
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Day-0 protocol, in which the superovulatory treatments initiated soon after the pre-
vious ovulation (Rubianes and Menchaca 2003) and/or by using GnRH analogues.

Administration of the GnRH antagonist or agonist analogues has a double effect 
and eliminates a dominant follicle and in parallel increases the recruitment of 
gonadotrophin-responsive follicles. Treatment with a GnRH agonist suppresses 
secretion of LH pulses during treatment, after an initial short stimulatory “flare 
effect,” and thereby blocks follicle development beyond 3 mm (McNeilly and Fraser 
1987). On the other hand, GnRH antagonists produce an immediate effect, without 
a desensitization period, by competitive blockade of the GnRH receptors, causing a 
rapid decline of FSH and LH levels in serum, and the loss of follicles larger than 

Table 6.1 Hormonal treatments management of reproductive activity and control of the ovarian 
cycle in donor and recipient females

Compound
Donor/
recipient Aim Effect Administration

Progesterone or 
analogues 
(progestagens)

Both Induction and 
synchronization of 
ovulations and 
estrous cycles

To simulate 
endogenous 
corpus luteum

CIDR or 
intravaginal 
sponges

Prostaglandins or 
analogues 
(prostanoids)

Both Induction and 
synchronization of 
ovulations and 
estrous cycles

To cause lysis of 
endogenous 
corpus luteum

Intramuscular 
injection (single/
double dose)

Melatonin Both Induction of breeding 
season activity

To raise 
melatonin levels 
for mimicking 
reproductive 
season

Subcutaneous 
implants

Equine chorionic 
gonadotrophin 
(eCG)

Both Induction of follicular 
growth and ovulation

To raise 
endogenous 
levels of FSH and 
LH

Intramuscular 
injection (single 
dose)

Follicle- 
stimulating 
hormone (FSH)

Donor Induction of follicular 
growth

To raise 
endogenous 
levels of FSH

Intramuscular 
injections 
(multiple dose)

FSH/eCG Donor Induction of follicular 
growth

To raise 
endogenous 
levels of FSH

Intramuscular 
injection (single 
dose)

GnRH analogues 
(agonists or 
antagonists)

Donor Suppression of 
dominant follicles 
and stimulation of 
follicular growth

To decrease 
endogenous 
levels of FSH and 
mainly LH

Intramuscular 
injections 
(multiple dose)

GnRH or GnRH 
agonist

Donor Induction of 
ovulation

To increase 
endogenous 
levels of LH

Intramuscular 
injection (single 
dose)

LH Donor Induction of 
ovulation

To increase 
endogenous 
levels of LH

Intramuscular 
injection (single 
dose)
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3 mm in ewes (Campbell et al. 1998). A GnRH antagonist pretreatment is a good 
option to increase efficiency of superovulatory protocols in sheep (Brebion et al. 
1990; Cognié 1999; Cognié et al. 2003) and goats (Cognié et al. 2003; Gonzalez- 
Bulnes et al. 2004d), albeit daily doses of GnRH represent a time-consuming proce-
dure. In contrast, injection of a single dose of 1.5 mg of GnRH antagonist in sheep 
suppresses the effects of follicular dominance, thus allowing a significant increase 
(usually more than twofold) in the mean number of gonadotrophin-responsive fol-
licles 2–3 mm in size, which grow to preovulatory size in response to the adminis-
tration of exogenous FSH (Lopez-Alonso et  al. 2005a, b). However, negative 
consequences of a high number of smaller follicles (2–3 mm) on oocyte maturation 
and fertilization and degeneration rates must be taken into account (Cognié et al. 
2003; Gonzalez-Bulnes et al. 2004c, Gonzalez-Añover et al. 2004; Berlinguer et al. 
2006) (Table 6.1).

6.6  Embryo Recovery and Transfer: Surgical 
and Nonsurgical Methods

Currently, embryo collection and transfer in small ruminants can be performed by 
surgical (Loi et al. 1998; Lehloenya and Greyling 2009; Torres and Sevellec 1987; 
Bruno-Galarraga et al. 2014), laparoscopic (McKelvey et al. 1986; Flores-Foxworth 
et al. 1992), or transcervical methods (Nagashima et al. 1987; Pereira et al. 1998; 
Fonseca et al. 2013, 2014).

Laparotomy—Surgical techniques for embryo collection and transfer in small 
ruminants, with exposure of the reproductive tract, are now used on a global scale. 
Laparotomy allows exact counting of the number of corpora lutea and visual inspec-
tion of the reproductive organs. The percentage of embryos recovered with this 
technique ranges between 40% and 80% according to the flushing methodology 
used, volume and number of washing attempts of the uterine horns, and operator 
skills and experience. Since the 1930s, when the first experiments were performed 
(Warwick et al. 1934), it remained in use even though it implies more risk for the 
treated animals as it requires general anesthesia, which in turn involves the need for 
animal fasting, drug administration, and surgical intervention. A consequence of 
this approach is that the donor can develop adhesions that can involve the ovaries, 
oviducts, and uterus and usually is associated with reduction in embryo recovery 
rates (Lehloenya and Greyling 2009). Hence, the number of collections per female 
is usually limited to two or three (Torres and Sevellec 1987). Other limitations are 
the relatively high costs of equipment and the stress of the animals due the manipu-
lation of the exteriorized reproductive tract. Transfer of embryos by surgical lapa-
rotomy follows the same procedure used for collection: the embryos (generally one 
or two per recipient if in vivo-produced embryos are used, or higher numbers if 
in  vitro-produced embryos are employed) are transferred in the exposed uterine 
tract with the aid of a small catheter (Tomcat catheter or similar) into the uterine 
horn, 2–3 cm from the uterine-oviductal junction.
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Laparoscopy—Laparoscopy is an alternative technique to recover and transfer 
embryos from goats and sheep. It leads to fewer adhesions, and, therefore, a donor 
could be repeatedly used for collections for up to seven times (Flores-Foxworth 
et al. 1992). However, this method still requires special equipment and skilled per-
sonnel. Regardless of the good efficiency (Schiewe et al. 1984), this technique has 
not been extensively adopted worldwide (Schiewe et al. 1984). Limiting factors are 
the required refined ability of operators associated with the relatively expensive 
equipment to perform embryo recoveries. Both laparoscopic and laparotomy tech-
niques are associated with prolonged fasting of donors that are usually maintained 
under general anesthesia. Transfer of embryos can be also performed by endoscopi-
cal examination of the uterine horn (to the horn ipsilateral to the corpus luteum). 
Embryos are placed in an insemination straw (0.25 ml) and are inserted in a modi-
fied insemination gun equipped in the terminal part with an 18 needle that, after 
penetrating the uterine wall, can facilitate the release of the embryos inside the 
uterine lumen. 

Transcervical procedures—Recovery of embryos from sheep and goats by 
nonsurgical procedures (NSER) has been developed in the 1980s (Lin et al. 1979) 
and recently has received renewed interest. The technique is less invasive and 
needs a simpler anesthetic protocol (epidural block and local cervical anesthesia) 
than laparotomy and laparoscopy. Moreover, animals may remain in a standing 
position under sedation. Nonsurgical collection and transfer have been reported 
first in goats, in which, due to the anatomical configuration of the reproductive 
tract, it is easier to pass the cervical plicas compared to sheep. When using the 
nonsurgical technique, the cervix is clipped with nontraumatic forceps that allow 
traction, and a catheter is inserted through the cervix to reach the desired uterine 
horn (Fonseca et al. 2014). A different type of catheter can be used (usually with 
one or two ways) to flush the reproductive tract with different volumes of collec-
tion medium. Recovery rates range from 60% to 100%, depending on the animal 
and the operator skills, and are not very different from the rates obtained by lapa-
rotomy or laparoscopy. Future studies have to reveal if the technique can be used 
in different breeds of small ruminants and, in particular, in animals with reduced 
size and weight.

The absence of adhesions when using NSER is a major advantage and allows 
successive collections in contrast to laparotomy or laparoscopy. On the other hand, 
the difficulty of introducing a catheter through the cervix, mainly in sheep, and the 
missing option of rectal manipulation of the tract are main obstacles of NSER pro-
cedures. Transfer of embryos is performed in a similar way and a device containing 
the embryo is coupled to a catheter to release the embryo into the uterus. A compari-
son revealed that nonsurgical embryo transfer usually results in a recovery rate simi-
lar to that of surgical techniques (Fonseca et al. 2014; Zambrini et al. 2014, 2015) 
with pregnancy and birth rates of around 50% (Fonseca et al. 2014). Studies with 
higher numbers of animals could show if the technique can be used successfully in 
different breeds, in particular, in animals with reduced size and weight (Table 6.2).
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6.7  Factors That Can Be Relevant for Pregnancy Success

The full realization of the potential of embryo transfer procedures in small rumi-
nants depends on optimizing the number of progeny born from females with high 
genetic merits. Pregnancy rates after ET in sheep and goats vary from 29% to 75% 
and are affected by synchronization protocol and superovulatory response but are 
also directly related to the viability of the transferred embryos.

Several factors play a critical role in determining embryonic and fetal losses in 
the ewe. Bolet et al. (1986) suggested that these losses could be caused by at least 
three components: (a) paternal influences, related to the quality of semen; (b) the 
female, due to the quality of the ova and uterine environment; or (c) the embryo 
itself. There are conflicting reports on embryo survival in sheep ranging from unaf-
fected survival rates (Armstrong and Evans 1983) to increased (Cseh and Seregi 
1993) or decreased survival rates (Mutiga 1991).

Several other factors need to be included: the maternal effect of the recipient, 
the number and the developmental stage of the embryos that were transferred, 
and the method of embryo production (e.g., in vivo versus in vitro). Eventually, 
embryo storage and its manipulation could affect the success of as well the age 
of donors and culture conditions for in  vitro-produced embryos (Thompson 
et al. 1995; Holm et al. 1996; Ptak et al. 1999; Dattena et al. 2000; Naitana et al. 
1996).

6.7.1  Maternal Effect

Factors related to both embryos and recipients have been suggested to affect sur-
vival of the transferred embryos in sheep and goats, including the stage of embryo 
development, embryo quality, the number of corpora lutea, and age and parity of the 
recipients (Donaldson 1985; Alabart et al., 1995; Thompson et al. 1995; Armstrong 
and Evans 1983).

The term “maternal effect” indicates an influence of the dam on its offspring, 
either from genetic or environmental causes. Embryo transfer technology enables 
experimental investigation of embryo-maternal communication providing unique 
opportunities to study the genetic control of embryonic survival and growth.

Table 6.2 Methods of embryo recovery in sheep and goats and their efficiency

Method
Required 
anesthesia Repeatability

Amount of 
flushed 
medium (ml)

Range of 
recovered 
embryos

Embryos 
collected/N.
ovulations

Average 
embryos 
recovered

Laparotomy Yes 1–4 times 40–60 0–30 40–100 5–12
Laparoscopy Yes 1–8 times 40–60 0–15 0–85 3–8
Transcervical No 1–>15 times 40–1200 0–18 0–90 4–10
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Among the possible factors, progesterone levels have been found to play a vital 
role in early embryo development, implantation, and establishment of pregnancy. 
The plasma progesterone concentration in recipient animals is related to the number 
of ovulations or corpora lutea in sheep (Ashworth et  al. 1989). While in goats 
embryo survival usually is higher with increased numbers of corpora lutea 
(Armstrong and Evans 1983) and plasma progesterone concentrations, little infor-
mation is available for sheep. We have observed that pregnancy rates after embryo 
transfer were higher in ewes with more than one CL compared to animals with only 
one CL (data not published—personal observation). On the other hand, it is known 
that at least one embryo must be present in the uterine lumen by day 12.5 post-estrus 
to prevent luteolysis (Moore 1985). The bidirectional communication between 
endometrium and embryos is critical to determine the role of the uterine environ-
ment. In a large-scale study with records from 11,369 animals, the effects of age, 
weight, and sire on embryo and fetal survival in sheep were investigated (Shorten 
et al. 2013). The author concluded that, from a genetic point of view, the dam’s abil-
ity to maintain a pregnancy is significantly higher than the effects of embryo com-
petence. Therefore, a selection of dams based on their maternal performance could 
provide effective means to improve embryonic survival.

Moreover, Cumming et al. (1975) reported that embryonic survival from breeding 
to days 26–30 was greater in crossbred than in Merino twin-ovulating ewes, but did not 
differ between breeds of single-ovulating ewes. Naqvi et al. (2006, 2007) investigated 
developmental competence, birth, and survival of Garole (small-sized) lambs after 
transfer of two or three embryos into large-sized non-prolific recipient ewes. They 
found that embryos derived from prolific sheep developed to term at a higher propor-
tion when transferred into the uterine environment of higher-body- sized non-prolific 
sheep, which provided more space for embryo development than small-sized Garole 
ewes. They also observed that the monotocous character of recipients was not a limit-
ing factor for pregnancy success when two or three embryos had been transferred.

6.7.2  Number of Embryos Transferred

There is an economic incentive on transferring multiple embryos to reduce the num-
ber of recipient ewes or does. However, Anderson et al. (1979) reported that uterine 
crowding can cause an increased frequency of pregnancy losses in nulliparous 
recipients receiving more than one embryo.

In sheep, embryonic and fetal mortality leads to large economic losses. Embryonic 
and fetal losses are estimated to 30% (Bolet et al. 1986). Most embryonic losses 
have been reported to occur before day 18 (Hulet et al. 1956; Moore et al. 1960; 
Quinlivan 1966). Complete losses from day 18 to lambing were estimated to 9.4% 
(Hulet et al. 1956), and fetal losses from day 30 to term were only 1–5% (Quinlivan 
1966). More recently O’Connell et  al. (2016) reported that embryo loss mainly 
occurred prior to day 14 of gestation with 6% losses before day 4 and 12% loss 
between days 4 and 14 of gestation. It has been reported that embryonic losses 
increased with an increasing ovulation rate (Kleemann and Walker 2005).
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Naqvi et al. (2007) found that the incidence of embryonic mortality up to day 
40 of gestation was reduced when the number of transferred embryos had 
been increased. Embryo survival up to 40 days of gestation and up to term was 
38.1% when three embryos had been transferred per ewe which was higher than 
after transfer of two embryos per ewe (28.6%). In the same study, all embryos 
were transferred to the ipsilateral uterine horn. It has also been reported that trans-
fer of two embryos to the ipsilateral or both uterine horns does not influence sur-
vival of the embryos (Torres and Sevellec 1987), due to migration of embryos 
during early stages of development. A higher pregnancy rate of 55.2% has been 
reported in Hungarian Merino ewes following transfer of two embryos per recipi-
ent, compared to 45.6% in case of single-embryo transfers (Cseh and Seregi 
1993). Mutiga (1991) reported that transfers of multiple embryos in tropical sheep 
increased the number of lambs born per pregnant ewes. Pregnancy rate was sig-
nificantly higher after transfer of embryos pairs (64%) than single (39%) embryos 
in in  vitro-produced embryos (Brown and Radziewic 1998). Contrary to this 
result, data from embryo transfer studies (Land and Wilmut 1977) have shown 
that doubling the number of embryos transferred resulted in a decrease of the 
number of lambs born.

Armstrong and Evans (1983) indicated that embryo survival can be observed in 
twins when embryos had been placed into the same oviduct, which suggests that 
synergism between embryos influences each other’s survival upon transfer in the 
goat. A possible explanation for such cooperation includes enhanced luteotrophic or 
anti-luteolytic gender actions resulting in improved luteal maintenance in recipients 
or enhanced signaling to the endometrium involved in the process of implantation 
(placental attachment). Whatever the explanation, the finding has important impli-
cations by enabling the embryo-carrying capacity of the recipient pool of goats to 
be doubled.

In addition, transfer of two embryos into the ipsilateral uterine horn is likely to 
increase the amounts of interferon-t and other embryonic signaling molecules in the 
uterus needed to maintain pregnancy and prevent luteolysis.

6.7.3  Development Stage and Grade of Embryos

Morphological evaluation of the developmental stage takes into account age and 
quality of the embryo. Embryonic stages and quality are usually based on the 
descriptions published by the International Embryo Transfer Society (IETS) 
(Stringfellow and Seidel 1998).

In embryo transfer, programs in small ruminants and cattle, higher fertility rates 
were obtained when the transferred embryos were in a more advanced development 
stage (Alabart et al. 2003). These findings agree with previous work conducted by 
Moore and Shelton (1962) in which an increased embryonic survival was observed 
with an increased age of the transferred embryos.

Embryo age largely corresponds to the stage of development. Based on a 
large number of fresh in  vivo-derived embryo transfers, it was shown that 
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embryonic stages ranging from late morulae to expanded blastocysts result in 
comparable pregnancy rates, whereas after hatching lower pregnancy rates can 
be expected (Hasler 1998). It has also been reported that when the embryos 
were recovered at early stages, in vitro embryo culture until the blastocyst stage 
might provide advantages over traditional protocols by allowing transfer of 
embryos into a synchronized uterine environment. Moreover, during culture, 
there is the possibility to select only those embryos that have demonstrated the 
potential for continued development under embryonic genomic control (Johnson 
et al. 2007).

Transfer or recovery of embryos has been also performed by transferring at early 
stages (2–3.5 days post fertilization) with acceptable results (Alabart et al. 2003). 
Technically the method implies transfers into the oviduct when the embryos are 
prior to the 8-cell stage and transfers to the uterus with embryos beyond the 8-/16-
cell stage. Practical advantages are usually not associated with embryo transfers at 
early stages, and viability is not changed compared to later embryonic stages 
(Ishwar and Menon 1996). In contrast, as IVP embryos are more stage sensitive than 
are in vivo-derived embryos, higher conception rates were achieved following trans-
fer of expanded blastocysts compared to morulae or earlier stages (Lamb 2005; 
Naitana et al. 1996).

A correlation between embryo morphology and pregnancy rates has been dis-
cussed for many years (Steer et al. 1992). Within each embryonic stage, morpho-
logical quality is also closely associated with pregnancy rate, as reported in a 
number of studies (Donaldson 1985; Hasler 2001; Lindner and Wright 1983). Farin 
et al. (1995) showed that agreement among six experienced embryo evaluators was 
higher for in vivo-derived embryos compared to their in vitro-derived counterparts. 
In addition, there was a relatively high degree of agreement when evaluating excel-
lent and degenerated (poor) embryos, but a lower agreement relative to good and 
fair embryo viability categories (Lindner and Wright 1983).

Although many comprehensive morphological descriptions have been published 
(Shea 1981; Lindner and Wright 1983), individual variation in embryo grades and 
quality ratings is still prevalent. It is not surprising that the individual embryologist 
is found to account for significant variation in the embryo’s quality grading. 
Conversely, the embryologist has less influence on the developmental scores, sug-
gesting that this trait is easier to describe. Quality evaluation is further hampered by 
loose or degenerate cells in the embryo that are often more difficult to see in the 
blastocyst than in the morula. No practical method to replace the visual morphologi-
cal scoring method has been found so far (Betteridge and Rieger 1993). Evaluation 
of embryo quality is even more challenging when embryos have been produced 
in vitro. Timing of development is considered as predictive marker of embryo qual-
ity in these embryos. Reduced viability due to poorer quality grade resulted in 
slower rates of development (Walker et al. 1996; Leoni et al. 2007) and reduced 
pregnancy rates after transfer (Shea 1981; Lindner and Wright 1983; Hasler 1998) 
(Fig. 6.1).
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6.7.4  Donor Effect on Embryo Quality

A large proportion of the variability in embryo development and quality has been 
attributed to the donor animal. The background for this variation cannot be fully 
explained, as indicated by the relatively low repeatability for both embryo stage and 
quality grade in the bovine (Callesen et al. 1995). Probably, donor hormone levels 
during the preovulatory period may affect fertilization and early embryonic devel-
opment. In cattle the causes of the variation between donors (i.e., donor breed and 
parity, insemination bull, year and season) were insufficient and could only partially 
explain the variability (Callesen et al. 1995). With regard to gonadotrophin regimes, 
embryo quality seems closely related to the type and dosage of the stimulating 
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16 -CELL  STAGE:
A: high quality sheep
embryos with blastomeres
of regular size: B : low quality
sheep embryos with irregular
blastomeres  which show
partial  fragmentation

COMPACTED
MORULA STAGE:
C: regular high quality sheep
compactedmorula; D: low
quality morula  with fragmented
blastomeres

BLASTOCYST
STAGE:
E: High quality sheep
blastocyst with regular
morphology: F:  low quality
blastocyst with partial
formation of blastocoelic cavity
and blastomer fragmentantion 
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Fig. 6.1 Morphological evaluation of high-quality (H) and low-quality (L) embryos recovered 
from superovulated ewes. Cell stage: (a) High quality sheep embryos with blastomeres of regular 
size: (b) low quality sheep embryos with irregular blastomeres which show partial fragmentation. 
Compacted morula stage: (c) regular high quality sheep compacted morula; (d) low quality morula 
with fragmented blastomeres. Blastocyst stage: (e) High quality sheep blastocyst with regular mor-
phology: (f) low quality blastocyst with partial formation of blastocoelic cavity and blastomer 
fragmentantion
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hormones during the superovulatory treatment. It has been shown that different FSH 
regimes can affect the developmental capacity and cryotolerance of ovine embryos 
derived from oocytes collected by ovum pick-up of donor sheep (Berlinguer et al. 
2004). In particular the dosage regimes of FSH influence the developmental capac-
ity of recovered oocytes to develop to blastocysts in vitro and their cryotolerance 
after vitrification procedures. Embryo quality is also significantly affected by the 
stimulating hormones during the superovulatory treatment. Often a high superovu-
latory response is followed by reduced fertilization rates and reduced embryo qual-
ity. A superovulatory treatment of ewes with eCG/FSH increased the ovarian 
responses compared with FSH alone, but the embryos showed reduced viability 
rates after vitrification (Leoni et al. 2001) (Fig. 6.2).

6.7.5  Source of Embryos: In Vivo vs. In Vitro Embryos

One of the solutions to overcome the relatively low efficiency of MOET programs 
is to produce and transfer in vitro-produced embryos (IVEP). The IVEP procedure 
does not require superovulation because oocytes are recovered directly from the 
follicle in hormonally or unstimulated females. IVEP can also be used in non-fertile 
females and pregnant, lactating, and even slaughtered females. Moreover, embryos 
can be produced in vitro from oocytes of prepubertal females with a technology 
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called “juvenile in vitro embryo transfer” (JIVET) that is compatible with reduced 
generation intervals and concomitantly increased genetic gain. Thus, in a JIVET 
scheme using oocytes obtained from 3- to 4-week-old females, it is possible to 
increase the rate of genetic gain by approximately 5% (reviewed by Morton 2008). 
In practical terms, animals of high genetic merit are selected, and their oocytes are 
collected from live individuals (adult or juvenile) by surgical procedures or from 
slaughtered animals. These techniques are compatible with the production of a high 
number of cheap embryos, but several limitations currently prevent a more wide-
spread application.

The collection of cumulus-oocyte complex (COCs) from living small ruminants 
implies a laparotomy or laparoscopy. COCs collection via laparotomy would pre-
vent the reuse of the same donors in repeated collections, while oocyte collection 
can be performed repeatedly by laparoscopy ovum pick-up (LOPU) in the same 
animals. Furthermore, several studies indicate that the viability of in vitro-produced 
embryos in small ruminants is lower compared to their in vivo-produced counter-
parts (Cognié et al. 2003, 2004). This low viability is observed irrespective of the 
embryonic stage, age of donors, and technique used to obtain the oocytes (from 
slaughterhouse or LOPU).

6.7.6  IVP from Adult Animals

IVP embryos are usually produced from oocytes collected from slaughtered animals 
or from in vivo by laparoscopy and oocyte ovum pick-up (LOPU). These oocytes 
can be in vitro matured, fertilized, and cultured up to blastocysts. Success rates are 
high in all these steps with rates of IVM and cleavage being around 90% and 75%, 
respectively, and blastocyst rates at 30–50%, to some extent dependent on age, 
genetic background, nutritional management, and culture conditions. Comparative 
studies in sheep and goats have shown that the two species can generate embryos 
with similar rates of development and viability (Cox and Alfaro 2007). Hormonally 
stimulated ewes and goats have been subjected nine to ten times to oocyte collection 
by laparoscopic-guided follicular puncture. The success rates after IVM, IVF, and 
IVC were similar to those obtained with oocytes derived from abattoir ovaries.

Similar results have been found by Cocero et al. (2011) who showed that the 
development of IVP embryos up to the blastocyst stage was not different between 
slaughterhouse and laparoscopic ovum pick-up-derived oocytes in sheep. In goats, 
oocytes derived from abattoir ovaries had different oocyte maturation kinetics and a 
higher percentage of development up to the blastocyst stage compared to oocytes 
isolated laparoscopic ovum pick-up. No differences were observed in the number of 
blastocysts per cleaved IVP embryos (Souza-Fabjan et al. 2014). Differences have 
been observed when oocytes were recovered by LOPU after different stimulation 
regimens that can influence the quality of the derived oocytes and subsequent devel-
opment in vitro (Berlinguer et al. 2004). At present, the percentage of blastocysts 
that can be produced from adult sheep ranges between 30% and 60% with preg-
nancy rates of 30–60% which is lower than after transfer of in  vivo-produced 
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embryos (60–80%). The reduced viability of in vitro-produced embryos becomes 
also more evident if the number of embryos transferred to recipients that can develop 
to term is considered. In fact, ewes that receive two or more IVP embryos often 
develop a single pregnancy and yield one offspring and only rarely carry twins 
(Papadopoulos et al. 2002). Similar data have been reported by Dattena et al. (2000) 
which showed a lambing rate from in  vitro-produced and freshly transferred 
embryos of 40% (20  lambs/50 blastocysts transferred), which was significantly 
lower when compared to the 81.2% of in vivo-derived blastocysts (32 transferred 
fresh, 26 lambs born).

This reduced viability leads to embryonic losses mainly at 20–25 days of gesta-
tion, while prior to this there is no a significant reduction in the development of 
transferred embryos (14- and 25-day-old embryos, personal observation). The ele-
vated embryonic and fetal losses of IVP embryos in this period could be related to 
alterations in angiogenesis in IVP embryos compared to in vivo embryos (Reynolds 
et  al. 2015). An aberrant placental angiogenesis is thought to  interfere with 
 embryonic and fetal development. An increase in fetal weight is observed in IVP 
embryos, and consequently the reduced trophic supply of the altered placenta can 
interfere with regular conceptus development.

6.7.7  IVP Embryos from Juvenile Donors

The use of juvenile donors in embryo transfer (ET) programs offers considerable 
potential for accelerated genetic gain in domestic livestock through reduced genera-
tion intervals. This possibility has been investigated in the last years and factors 
such as donor selection, oocyte collection methods, and hormone stimulation meth-
ods designed to produce maximum yields of viable oocytes for young age donors 
have been studied. Overall the rates of juvenile ovine IVP embryos are significantly 
lower compared to embryos derived from adult dams and far away from that of 
in vivo-recovered embryos. Due to the presence of a large population of antral fol-
licles, high numbers of oocytes can be collected from each donor, with the possibil-
ity to generate an average of eight to ten pregnancies from 6–8-week-old lambs 
(Armstrong et al. 1997).

The production of viable IVP embryos has become possible in younger lambs 
(4 weeks old) subjected to different hormonal stimulations (Ledda et al. 1997; Ptak 
et  al. 1999). Results indicate that the number of oocytes recovered increased in 
lambs stimulated by hormones, while blastocyst quality seemed to be equivalent in 
hormonally treated and non-stimulated animals. Overall, results confirmed the 
reduced viability of embryos derived from juvenile animals with increased fetal 
losses after embryo transfer. The reduced viability seems to be related to morpho-
logical and metabolic changes observed in oocytes derived from prepubertal ani-
mals compared to their adult counterparts (Ledda et al. 2001; Leoni et al. 2015). 
Similar results have been observed in goats. Comparing the IVP embryos from pre-
pubertal and adult animals, the developmental competence was primarily related to 
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the size of follicles and oocyte diameter. Thus, oocytes derived from the largest 
follicle had a diameter comparable to that of adult oocytes performed in a similar 
way when subjected to IVM, IVF, and IVC (Paramio and Izquierdo 2014; Romaguera 
et al. 2011). To increase the efficiency of IVP, embryos derived from prepubertal 
animals, research has been undertaken to optimize donor selection and hormonal 
stimulation methods to reduce the variability and increase the proportion of donors 
responding to hormonal stimulation and to increase oocyte developmental compe-
tence. Recent improvements to JIVET, resulting from a modified hormonal stimula-
tion regime, have eliminated the failure of donors to respond to hormonal stimulation 
and increased both number and developmental competence of oocytes harvested 
from very young prepubertal lambs (Kelly et al. 2005). This increased efficiency has 
facilitated incorporation of other reproductive technologies such as sperm sexing 
with JIVET, resulting in the birth of lambs of predetermined sex from prepubertal 
lambs (Morton 2008).

To respond to the increasing interest in the generation of embryos from juve-
nile donors, several other strategies have been explored to improve the efficiency 
of the JIVET system. As the technique is based on the large number of develop-
mentally competent oocytes collected per single animal, predictive markers of the 
potential follicular population have been investigated, to select the best respond-
ing animals for hormonal stimulation. The concentration of AMH in lambs during 
the first weeks after parturition has been found to be a good predictive marker of 
the antral follicle population (Torres-Rovira et al. 2014; Kelly et al. 2016) that 
correlates well with success to hormonal stimulation. Lambs that were 3 weeks of 
age with high level of AMH yielded the largest number of oocytes with highest 
development to blastocyst when cultured in vitro. The number of antral follicles 
in prepubertal ewes is affected by specific gestational environmental conditions. 
The proportion of blastocysts calculated, as a percentage of cleaved embryos from 
total cumulus-oocyte complexes collected, was higher (p < 0.05) in females born 
with a female co-twin compared with those born with a male co-twin. These 
results indicate an enhancing effect of the female co-twin on oocyte development. 
Taking this into consideration could allow to selecting lambs for a JIVET program 
based on litter size and sex of the co-twin. In prepubertal goats and sheep, the 
possibility to select oocytes with high developmental competence prior to matura-
tion has been investigated by noninvasive systems. Immature oocytes from adult 
and prepubertal donors can be differentially stained by Brilliant Cresyl Blue 
(BCB) which indicates differences in glucose-6-phosphate dehydrogenase 
(G6PDH) activity. The G6PDH amount is higher in growing oocytes, while it is 
low in fully grown oocytes, which are the ones that most frequently yield viable 
offspring. Oocytes selected by the BCB stain produced more blastocysts in vitro. 
The blastocysts were also of better quality compared to the pool of unselected 
oocytes. However, due to different staining and technical protocols, the BCB 
approach needs to be validated before it can be used for evaluating developmental 
capacity of ovine and capacity oocytes (Opiela and Kątska-Książkiewicz 2013) 
(Fig. 6.3).
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6.8  Embryo Cryopreservation and Transfer

A successful MOET program usually includes the possibility for freezing the 
embryos prior to transfer to synchronized recipients. Cryopreservation has become 
an integral part of the commercial embryo transfer industry, but application in small 
ruminants is based on relatively few studies (Boundy et al. 1985; Ishwar and Menon 
1996), and the freezing process needs to be constantly improved and simplified 
(McGinnis et al. 1993; Vajta 2000). From the practical viewpoint, embryo freezing 
has many advantages: (1) freezing of embryos obtained from females with high 
genetic value facilitates distribution of superior genetics from dams, which acceler-
ates the rate of genetic improvement; (2) embryo cryopreservation facilitates inter-
national trade  of valuable genetic stock which is a financially feasible and safe 
alternative to live animal transport. Data on the success rates of embryo freezing 
protocols in small ruminants are relatively scarce compared to cattle. The first lambs 
from frozen/thawed embryos were born in 1976 (Willadsen et al. 1976), and lambs 
from vitrified embryos were born in 1990 (Széll et al. 1990).

Slow-freezing protocols require a biological freezer and need more time to be 
completed. The ultra-rapid technique, such as vitrification, is time and cost effec-
tive, since it does not require any special equipment, and is, therefore, well adapted 
to routine field use (Baril et al. 2001). Sheep and goat embryos are able to survive 
both slow-freezing and vitrification procedures (Martinez et al. 1998). Comparisons 
between the different techniques are mainly based on lambing rates after embryo 
transfer. However, selection of embryos for transfer is based on the stereomicro-
scopic evaluation of embryo morphology after thawing (Abe et al. 2002) in accor-
dance to the guidelines of the International Embryo Transfer Society (Stringfellow 
and Seidel 1998).

This selection step can be somewhat subjective as has been demonstrated by 
ultrastructural studies of vitrified in vitro- and in vivo-produced bovine blastocysts 
(Vajta 2000) and in controlled slow frozen in  vivo-produced ovine morulae and 
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blastocysts (Cocero et  al. 2002), which have shown that certain abnormalities 
remain undetected in the stereomicroscopic analysis.

Vitrification of embryos is most likely the technique that will be used in the 
future (Fahy and Rall 2007) and different devices and systems have been proposed, 
varying with regard to type and concentrations of the cryoprotectant. The 0.25 ml 
straw (Naitana et al. 1997) or the open-pulled straw (OPS) has been used for suc-
cessful freezing of ovine morulae and blastocysts produced in  vivo (Baril et  al. 
2001; Dattena et al. 2004; Martinez et al. 2006) or in vitro (Dattena et al. 2004).

Baril et al. (2001) reported a 50% embryo survival rate and a high pregnancy 
rate to term (72%) after direct transfer of vitrified ovine embryos which was 
similar to the results to the stepwise dilution method (72% and 60%, respec-
tively). No differences were found between vitrified embryos transferred after 
in vitro removal of the cryoprotectant or directly after thawing in terms of lamb-
ing (67% vs. 75%, respectively) and embryo survival rates (lambs born/embryos 
transferred; 49% vs. 53%, respectively). However, the viability depends on the 
origin of embryos, and differences were found in the survival rates between 
embryos produced in vivo and embryos derived from IVP techniques. In fact, the 
viability is not significantly reduced after freezing of in vivo-produced embryos 
(70–90%), which it is significantly lower for cryopreserved IVP embryos (30–
40%). Post-thaw viability is also reduced in IVP embryos generated from prepu-
bertal oocytes.

6.9  Recipient Females

Transfer of the embryos to suitable recipients is the final step in a MOET program. 
The conditions of the recipient females (breed, age, nutrition and health, and repro-
ductive status) were described as main limiting factors for the success of embryo 
transfer programs (Moore et al. 1959). Other variables include the aptitude of the 
recipient to maintain the pregnancy and the degree of synchronization between 
donors and recipients (Rowson and Moor 1966). Nowadays the selection of the 
most suitable recipients remains critical, and finding reliable criteria for ultimate 
recipient is a major focus of research. Selection of recipients is primarily based on 
direct observations either by laparoscopy or laparotomy of the corpora lutea (size, 
number, and vascularization of the structure) and the evaluation of uterine tone and 
morphology (Torres and Sevellec 1987). These approaches have the limitation of an 
invasive handling, which may interfere with pregnancy rates.

Alternatively the corpora lutea can be evaluated by transrectal ultrasonography, 
which allows to visualizing if the recipient has ovulated and evaluation of the qual-
ity of the luteal tissue, since morphological and echogenic characteristics of the 
corpus luteum are related to concentrations of progesterone in plasma and are reli-
able factors for determining luteal function in small ruminants (González-Bulnes 
et al. 2000b).
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Conclusion
The current state of the art in multiple ovulation and embryo transfer (MOET) 
technology in small ruminants is steadily improving and could become one of the 
most applicable tools for the development of a future-oriented genetic program. 
New findings on the follicular wave patterns in small ruminants, the elucidation of 
follicular dominance, and the integration of this information into superovulation 
treatments are instrumental in predicting good responders and reducing variabil-
ity. Protocols that control follicular dominance have been designed to allow the 
initiation of superstimulation precisely at the beginning of a follicular wave. 
These new approaches are based on the pretreatment with a gonadotrophin- 
releasing hormone (GnRH) antagonist prior to the FSH treatments to avoid fol-
licular dominance and the administration of somatotropin or melatonin to improve 
oocyte quality and competence. These protocols will provide a rather homoge-
neous pool of small follicles that are gonadotrophin responsive, thereby enhanc-
ing the superovulatory response and embryo yields with a reduction of the 
incidence of unovulated follicles and early regression of corpora lutea. Significant 
improvements in the development of nonsurgical techniques are paving the way 
to reducing stress and costs of donors and recipient management, indicating the 
possible repeated use of individual donors. In addition, the progress with IVP 
embryos generated from adult and juvenile animals, combined with the genomic 
analysis of economically productive tracts, is opening new perspectives and could 
be instrumental for improving MOET programs in small ruminants.
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Embryo Transfer Technologies in Pigs

Curtis R. Youngs

Abstract
Embryo transfer (ET) became a reality in the swine industry with the birth of the first 
live ET piglets in 1950. Since that pioneering achievement more than 68 years ago, 
significant developments in porcine ET and its related technologies have occurred. 
Although the volume of commercial ET activity with pigs is low compared to that 
reported for cattle, substantial porcine ET activity is taking place in private compa-
nies and institutes engaged in biomedical research. In vitro production of pig embryos 
has greatly surpassed that of in vivo-derived embryos, and development of nonsurgi-
cal methods for transfer of swine embryos has opened the door to potential wide-
spread commercial application of porcine ET. The historical inability to cryopreserve 
pig embryos has been overcome to a great extent with development of protocols for 
vitrification of porcine embryos. The creation of genetically modified pigs via 
somatic cell nuclear transfer or genome-editing technologies depends upon success-
ful ET, and the needs of the biomedical research community likely will be the impe-
tus for further refinements in pig ET technologies.

7.1  History of Embryo Transfer in Pigs

Nearly six decades passed between the birth of the first mammalian embryo transfer 
(ET) offspring at the University of Cambridge, England, on May 29, 1890 (rabbits; 
Heape 1890), and the birth of the first pig ET offspring born on March 27, 1950, at 
the Pig Breeding Research Institute in Poltava, Ukraine (Kvasnitski 1950; for an 
English translation please see Kvasnitski (2001)). Kvasnitski’s groundbreaking 
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experiment involved transfer of embryos into four recipients. One of four recipients 
farrowed (25% farrowing rate), and embryo survival in the pregnant recipient was 
44% (four piglets born from nine embryos transferred). Figure 7.1 shows one of the 
piglets from the very first ET litter.

Ten years passed before the next known report on pig ET (Pomeroy 1960). In 
that interesting experiment, embryos were flushed from only one oviduct of each 
donor female, and embryos from a different donor were transferred into the flushed 
oviduct (allowing a donor to also serve as a recipient). Only one of six recipients 
farrowed (17% farrowing rate), and three piglets were born (only two of which were 
from the eight transferred embryos [25% embryo survival rate]). Two years later, 
the true potential of ET as a genetic improvement tool for pigs was convincingly 
demonstrated (Hancock and Hovell 1962). Three of six ET recipients farrowed 
(50% farrowing rate), litter size averaged 10.3 piglets, and embryo survival in preg-
nant recipients was 74%.

7.2  The Commercial Swine ET Industry

The primary reason that ET was originally considered for pig production was to 
enhance genetic improvement, and that reason is still valid today. The repeated col-
lection of preimplantation embryos from genetically superior sows/gilts, and subse-
quent transfer of harvested embryos to lower genetic merit (but reproductively sound) 
recipients, enables genetically superior females to produce more progeny in 1 year 
than would be possible through natural mating. Using only a small number of highly 
selected females as parents of the next generation of piglets equates to increased 
genetic selection intensity, and intense selection will lead to an accelerated rate of 
genetic improvement. Given the corporate structure of swine breeding companies in 
many parts of the world today, the use of ET in central nucleus herds seems wise and 
inevitable given the large number of sows over which the costs of ET may be spread.

Embryo transfer can also facilitate swine genetic improvement by introducing 
germplasm resources from other locales. The swine industry recognized the value 

Fig. 7.1 One of the four 
purebred Mirgorod piglets 
from the first successful pig 
embryo transfer performed  
by Kvasnitski (1950). (Photo 
courtesy of the wife of Dr. 
Kvasnitski)
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of ET for that purpose many decades ago, as evidenced by two early reports on 
transport of pig embryos from one country to another (Baker and Dziuk 1970; 
Wrathall et al. 1970). Moving valuable genetic resources as embryos instead of live 
animals can be done at a lower cost and with less risk of disease transmission 
(Youngs 2007), and it also eliminates potential stress associated with transport of 
live animals (an important animal welfare consideration).

Despite strong incentives to utilize ET in the swine industry, commercial pig ET 
activity remains low. Each year the IETS data retrieval committee gathers data on 
commercial ET activity in various livestock species. Unlike the data for bovine ET 
which tend to be complete, ET data on swine tends to be incomplete/underreported. 
Swine ET data compiled over a 20-year period (1997–2016) for in  vivo-derived 
(IVD) preimplantation embryos are presented in Table 7.1. The largest number of 
embryo recoveries recorded during that time period was 701 (in 1998), the largest 

Table 7.1 Commercial swine embryo transfer data reported to the data retrieval committee of the 
International Embryo Transfer Societya,b

Calendar 
year

Number of 
embryo 
collections 
reported

Number of 
embryos 
recovered

Number of 
embryos 
recovered per 
donor

Number of 
fresh embryos 
transferred

Number of 
frozen 
embryos 
transferred

1997 5 105 21 0 0
1998 701 11,264 16 2111 214
1999 241 8071 33 2529 0
2000 260 9043 35 7091 0
2001 469 13,607 29 13,589 0
2002 264 5008 19 0 0
2003 345 9609 28 8349 0
2004 488 11,833 24 4302 0
2005 501 11,806 17 8406 2280
2006 150 2840 19 4419 0
2007 173 4009 23 3675 0
2008 149 3800 26 3092 0
2009 149 3800 26 3092 0
2010 0 0 0 0 0
2011 53 997 19 1381 0
2012 114 2478 22 2478 0
2013 27 397 15 397 0
2014 0 0 0 0 0
2015 39 395 10 441 0
2016 49 413 28 397 0

aData were compiled from the annual reports of the International Embryo Technology Society 
(IETS) data retrieval committee published each year in the December issue of the IETS Embryo 
Transfer Newsletter
bData from commercial swine embryo transfer activity in some years is incomplete, leading to 
apparent discrepancies/mistakes in the data (e.g., the number of embryos transferred some years 
appears larger than the number of embryos recovered because embryo recovery data were not 
provided by all ET service providers)
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number of embryos recovered was 13,607 (in 2001), the highest average number of 
embryos recovered per donor was 35 (in 2000), and the largest number of fresh 
embryos transferred was 13,589 (in 2001). Interestingly, no commercial swine ET 
activity was reported for calendar year 2014.

There are a number of reasons why commercial swine ET is not as prevalent 
as ET in other livestock species such as cattle. Firstly, the pig is a litter-bearing 
species with a relatively young age at puberty and relatively short gestation 
length. Those combined factors serve as a disincentive for pork producers to 
spend time and money performing ET. Secondly, embryo collection and transfer 
methods historically have been surgical, and the necessity of performing sur-
gery limits the practicality of ET under field conditions. Thirdly, it had been 
extremely difficult to successfully freeze pig embryos for approximately three 
decades, and that inability to cryopreserve embryos essentially mandated that 
all ETs be conducted only with freshly collected embryos. Fortunately, for the 
latter two points, there have been significant technological advancements during 
the past decade.

7.3  Collection of In Vivo-Derived Embryos

To increase the efficiency of ET in pigs, it is important to regulate the time of 
estrus in donor and recipient pigs. In contrast to some species where exogenous 
prostaglandin F2α (PGF) is often used to regulate cyclicity, the use of PGF is 
limited in pigs because receptors for PGF do not appear on the corpora lutea until 
approximately day 12 of the estrous cycle (Guthrie and Polge 1976). Thus, the 
primary means to regulate the time of estrus in pigs is via use of the progesterone 
analogue altrenogest (Kraeling and Webel 2015). The timing of estrus in donors 
and recipients influences the success of ET in pigs, and asynchronous ET (place-
ment of embryos into a uterus that is not as far along in the estrous cycle as the 
donor) often yields higher pregnancy rates than synchronous ET (reviewed in 
Youngs 2001).

Another approach to potentially increase the efficiency of ET in pigs is to super-
ovulate donor females with exogenous gonadotropins. Although follicle stimulating 
hormone (FSH) could theoretically be used to induce superovulation, the hormone of 
choice seems to be the lower-cost equine chorionic gonadotropin (eCG, also known 
as pregnant mare serum gonadotropin [PMSG]) because it exhibits FSH-like activity 
and therefore stimulates ovarian follicular growth and development. Because the 
response to superovulation in the pig is highly variable and excessive response may 
lead to reduced embryo viability, many choose not to perform superovulation 
(Youngs 2001).

Embryo development in the pig is somewhat different than that of other mam-
malian livestock species. Embryos typically enter the uterus at the 4-cell stage of 
embryonic development, and embryos continue their development in the tip of the 
uterine horn until approximately day 6 at which time embryo migration begins. 
Transuterine embryo migration occurs beginning on day 9. Embryos are typically 
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recovered from donors 5 to 6 days after the onset of estrus. Retrograde flushing of 
the reproductive tract is not advisable because of the strong nature of the uterine- 
tubal junction.

Surgical recovery of porcine embryos, patterned after the method of Hancock 
and Hovell (1962), is illustrated in Fig. 7.2. Depending on the day of embryo recov-
ery, sterile flushing medium is introduced into either the oviduct (for recovery of 
early-stage embryos) or the tip of the uterine horn. Medium is “flushed” through the 
reproductive tract and collected into an embryo recovery dish with the aid of a glass 
cannula placed into the uterine horn beyond the suspected location of the embryos. 
Repeated embryo collections from the same donor are possible if the uterus is kept 
moist during the procedure.

In non-superovulated donors, fertilization rate is expected to be near 95% and the 
number of embryos recovered should closely follow the number of corpora lutea 
counted at the time of flushing. Porcine embryos appear different than those from 
cattle. In addition to the darker colored cytoplasm and presence of more lipid drop-
lets within the cytoplasm, the zona pellucida appears “dirty” due to the presence of 
multiple spermatozoa trapped in the zona pellucida (see Fig. 7.3).

Fig. 7.2 Surgical embryo 
recovery in the pig

Fig. 7.3 In vivo-derived porcine embryos showing spermatozoa trapped in the zona pellucida due 
to the relatively slow zona reaction in this species. A compact morula (left) and early blastocyst 
(right) are shown
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7.4  Recent Developments in Swine ET

7.4.1  Nonsurgical Transfer of Porcine Embryos

There has long been interest in performing nonsurgical ET in pigs. One early study 
of nonsurgical transfer of porcine embryos led to establishment of a day 17 “preg-
nancy” (Polge and Day 1968), while another study nearly 20 years later (Sims and 
First 1987) reported pregnancies that presumably did not persist to term. Birth of the 
first live piglets resulting from nonsurgical ET (Reichenbach et al. 1993), however, 
provided strong encouragement for future studies. Numerous other reports of por-
cine nonsurgical ET quickly followed (Hazeleger and Kemp 1994; Galvin et  al. 
1994; Yonemura et al. 1996, 2003; Li et al. 1996; Hazeleger et al. 2000; Martinez 
et al. 2004; Ducro-Steverink et al. 2004; Suzuki et al. 2004).

Successful reports of nonsurgical ET in pigs led to the commercial development 
and marketing of a variety of different porcine nonsurgical ET apparatuses (see, 
e.g., Fig. 7.4). In general, the approach used to perform nonsurgical ET in pigs is to 
place an artificial insemination (AI) catheter into the cervix where it is “locked” in 
place. A smaller diameter flexible catheter is then introduced into the lumen of the 
AI catheter, and the flexible catheter is guided through the interdigitating promi-
nences of the cervix, through the uterine body, and into a uterine horn. Typically, all 
embryos are deposited into one uterine horn because transuterine migration of 
embryos is a normal reproductive phenomenon in pigs (Anderson and Parker 1976). 
Deposition of embryos into the uterine body is avoided, however, because it leads to 
lower pregnancy and embryo survival rates than deposition of embryos in the uter-
ine horn (Wallenhorst and Holtz 1999).

The nonsurgical ET technique that perhaps has been most widely investigated is 
a deep intrauterine ET method (Martinez et al. 2013). Results of various studies 
conducted by this research group have been summarized recently (Martinez et al. 
2016a). Compared with the early pioneering studies, significant progress has been 
made. However, some issues with this nonsurgical ET method remain to be resolved, 
such as failure to pass the ET catheter through the cervix (Martinez et al. 2016b) and 
failure to properly position the catheter during transfer (15.9% of transfers—
Martinez et al. 2015). Results obtained under fairly large-scale field studies show 

Fig. 7.4 Example of commercially manufactured apparatus for nonsurgical embryo transfer in 
pigs. Please note the small diameter flexible catheter protruding from the lumen of the artificial 
insemination catheter. The flexible catheter is long enough to be inserted deeply into a uterine horn
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great promise for adoption of this method; farrowing rates above 60% with average 
litter sizes exceeding nine piglets were reported.

7.4.2  Cryopreservation of Porcine Embryos

The birth of the first mammalian offspring derived from transfer of frozen-thawed 
embryos occurred in mice (Whittingham et al. 1972). Nearly two decades passed, 
however, before the first piglet was born after transfer of frozen-thawed embryos 
(Hayashi et al. 1989). It was well documented that porcine embryos are extremely 
sensitive to temperatures below 15 °C (Wilmut 1972; Polge et al. 1974), and it was 
hypothesized that the chilling sensitivity of pig embryos was due to its high lipid 
content (Niemann 1985). Research on the biochemical composition of pig embryos 
(Youngs et al. 1994b) discovered that the predominant fatty acid present in porcine 
blastocysts was oleic acid (which has a melting point of 13.4 °C). Further evidence 
in support of lipid being responsible for the difficulty associated with cryopreserva-
tion emerged when the removal of lipid from porcine embryos via centrifugation led 
to the birth of live piglets (Nagashima et al. 1995). In addition, expanded blastocysts 
(containing less lipid) were found to be more cryotolerant than earlier developmen-
tal stages (Berthelot et al. 2003).

Porcine embryos have been cryopreserved using slow cooling equilibrium meth-
ods as well as ultrarapid cooling methods more commonly known as vitrification 
(reviewed in Youngs et  al. 2010). Studies on slow cooling approaches for cryo-
preservation of IVD porcine embryos are extremely sparse, but pregnancy rates 
ranging from 14% to 100% were reported. Ultrarapid methods for cryopreservation 
yielded pregnancy rates ranging from 60% to 80%, and vitrification is now recog-
nized as the preferred method for cryopreservation of porcine embryos (including 
those produced in vitro—Maehara et al. 2012) because of greater success and con-
sistency of results. Live piglets have also been produced from vitrified-warmed 
oocytes subsequently used for in vitro embryo production (Somfai et al. 2014). At 
present, however, there is no single universally accepted protocol for vitrification of 
porcine embryos.

7.5  Swine ET as a Research Tool

In addition to its use for improving pork production, ET is used in pigs to gain 
greater insights into fundamental biological mechanisms. For example, the Chinese 
Meishan pig is known to have larger litters than other breeds such as the Yorkshire. 
At the time of importation of the Meishan breed into the United States for study, the 
mechanism for increased prolificacy was unknown. A reciprocal ET study with 
Meishan and Yorkshire embryos (Youngs et al. 1994a) revealed that the prolificacy 
of the Meishan results not only from an inherently slower development rate of the 
Meishan preimplantation embryo but also from a suppressive (growth-slowing) 
effect of the Meishan uterus. Other researchers have utilized reciprocal ET studies 
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to study porcine fetal development (Miles et al. 2012) and piglet growth, lactation 
performance, and milk composition (Miles et al. 2015).

7.6  Swine ET as a Tool for Production of Healthy Pigs

In many parts of the world, corporate swine breeding companies operate large pro-
duction facilities where thousands of sows are housed on a single site. The high 
density of animals in these production facilities can represent a potential risk for 
disease transmission if the animals are not properly managed. Diseases such as 
PRRS (porcine reproductive and respiratory syndrome), PED (porcine epidemic 
diarrhea), and PCV2 (porcine circovirus type 2; Bielanski et al. 2013) are of great 
significance to these breeding companies.

During a disease outbreak, ET may represent a way to “rescue” the genetics of 
valuable females. Preimplantation embryos that are properly washed and handled in 
accordance with guidelines promulgated by the International Embryo Transfer 
Society (Stringfellow 2011) represent negligible risk of concomitant disease trans-
mission at the time of ET into healthy recipients at a disease-free site.

Briefly, guidelines for sanitary handling of embryos include examination of 
embryos at a magnification of at least 50X to verify the presence of an intact zona 
pellucida free of adherent material, five-step washing of no more than ten embryos 
from a single donor (a limitation for pigs compared with other species) using a  
1 to 100 dilution of washing solution, two-step washing procedure in 0.25% trypsin 
to remove any viruses that may be attached to the zona pellucida, five-step washing 
procedure (similar to that previously described), and finally inspection of washed 
embryos at ≥50X magnification to ensure embryos have an intact zona pellucida 
free of any mucus or cellular debris.

7.7  Swine ET as a Tool for Development of Assisted 
Reproductive Technologies

With each passing year, researchers continue to refine assisted reproductive tech-
nologies (ART). The development of methods for in  vitro production (IVP) of 
embryos was important not only in and of itself but also because it served as a 
springboard for development of affiliated reproductive technologies such as somatic 
cell nuclear transfer (SCNT) and genome editing of zygotes.

7.7.1  In Vitro Fertilization

Since the birth of the first in vitro-produced (IVP) piglet (Cheng et al. 1986), there 
has been continual scientific effort to refine and enhance methodology for in vitro 
maturation (IVM) of oocytes, in  vitro fertilization (IVF) of IVM oocytes, and 
in vitro culture (IVC) of presumptive zygotes produced via IVF. The chronology of 
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major developments related to porcine IVP embryos has been reviewed recently 
(Grupen 2014). Despite valiant research efforts, two problems still remain (Kikuchi 
et al. 2016) with the in vitro production of porcine embryos: (1) polyspermy and (2) 
imbalance of nuclear and cytoplasmic maturation.

A recent meta-analysis of ET data from porcine IVF studies (Liu et  al. 2015) 
revealed that factors influencing the success of ET with IVP embryos are not the same 
as those reported for IVD embryos (Youngs 2001). Although lacking some data for 
some traits across all 246 published articles, the meta-analysis revealed an average of 
106 and 31 embryos transferred per recipient prior to day 4 and on days 4–7, respec-
tively. Average pregnancy rate was 44%, and an average pregnancy loss of 14% was 
observed. Recipients exhibited a 43% farrowing rate with an average litter size of 5.1 
piglets. Piglet production efficiency, calculated as the total number of piglets pro-
duced divided by the total number of embryos transferred during the experiment, was 
5.7%. This compared to a piglet production efficiency of 20.3% for IVD embryos.

7.7.2  Somatic Cell Nuclear Transfer

Pig nuclear transfer was originally performed using embryonic blastomeres as 
donor cells (Prather et al. 1989), but this technique suffered from the fact that the 
genetic merit of cells of an embryo is unknown (i.e., mating genetically superior 
boars and sows together is no guarantee that the resultant piglets will be genetically 
outstanding). The first successful somatic cell nuclear transfer (SCNT) in pigs was 
reported more than 15 years ago (Onishi et al. 2000).

Two recent studies examined the overall efficiency of SCNT in pigs. Data from 
274 studies that generated 18,649 SCNT embryos during a 3-year period were ana-
lyzed in one report (Kurome et al. 2013). An average of 97 embryos were transferred 
to each of 193 recipients: 109 recipients (56%) became pregnant, and 85 (78%) gave 
birth. Of 318 piglets produced (1.7% piglet production efficiency), 75 (24%) were 
stillborn, and 243 (76%) were born alive. Of the 243 born alive, 100 (31% of total) 
died soon after birth, 39 (12%) were killed by their mother or died from infections 
unrelated to SCNT, 7 (2%) were utilized immediately after birth for investigations, 
and 97 (31%) were clinically healthy and exhibited normal development.

The meta-analysis previously mentioned (Liu et al. 2015) also examined various 
parameters associated with SCNT experiments. An average of 203 and 62 embryos 
were transferred per recipient prior to day 4 and on days 4–7, respectively. Average 
pregnancy rate was 45%, and an average pregnancy loss of 25% was observed. 
Recipients exhibited a 36% farrowing rate with an average litter size of 6.3 piglets. 
Piglet production efficiency was 1.0%.

7.7.3  Genome Editing of Zygotes

Genome editing is a term used to describe the specific and selective editing of the 
genetic makeup of an organism. When utilized in zygotes (recently fertilized 
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eggs) created through IVM/IVF technology, genome editing allows researchers to 
knock out a gene, repair a gene, or introduce a novel genetic change at a specific 
location in the genome. These genetic alterations can be incorporated into the 
animal’s germ line and thus be transmitted to progeny. A recent review of genome-
editing technology (Tan et  al. 2016) revealed that more than 300 pigs, cattle, 
sheep, and goats have been generated using genome editing. Genome editing has 
the potential to greatly enhance the rate of swine genetic improvement, and read-
ers are referred to a separate chapter in this volume for a more detailed discussion 
of this topic.
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Abstract
Embryo transfer has become a commonly used procedure in equine breeding 
worldwide. It allows for efficient use of valuable mares and mares in athletic 
competition. In addition, mares with reproductive problems can donate embryos 
to healthy recipients. This review describes techniques for embryo collection and 
transfer to the recipient, methods of transportation and cryopreservation, and 
superovulation procedures. Effects of specific procedures on success rates for 
embryo collection and pregnancies are discussed, as well as factors affecting the 
resulting offspring. Furthermore, an outlook is given on recent biotechnological 
technologies like preimplantation diagnostics and in vitro embryo production.
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8.1  Introduction

Equine embryo transfer is a biotechnological procedure, which has become com-
mon practice in horse breeding, and the number of foals from ET in commercial 
operations is steadily increasing. According to data collected by the International 
Embryo Technology Society (IETS), a total of 21.321 equine embryos were trans-
ferred in 2015  in 11 countries (http://www.iets.org/pdf/comm_data/IETS_Data_
Retrieval_2015_V2.pdf). Probably actual numbers of transfers are higher, because 
a few countries, with high embryo transfer activity, did not disclose their ET records. 
Using embryo transfer, it is possible to obtain more than one foal per year from a 
good mare. Furthermore, mares in training and competition can be used for breed-
ing (Campbell 2014). Embryo collection can be performed using 1- or 2-year-old 
mares (Panzani et al. 2007). This shortens the generation interval of mares with a 
promising pedigree. Another advantage of embryo transfer is that it can be used in 
mares that cannot carry a foal themselves due to general health problems or repro-
ductive weaknesses (e.g., repeated history of pregnancy loss). Embryo collection 
and subsequent cryopreservation of embryos can be performed throughout the 
whole year as long as the donor mare is cycling.

It has been a long way from the first successful nonsurgical recovery of blasto-
cysts from the uterine lumen of native pony mares (Oguri and Tsutsumi 1972), soon 
followed by the birth of the first equid offspring after reciprocal, interspecies trans-
fer of horse, donkey, mule, or hinny zygotes (Allen and Rowson 1972), followed by 
birth of the first foal produced by embryo transfer (Oguri and Tsutsumi 1974) to 
present practices where embryo transfer programs are offered commercially. 
Milestones of these developments included effective collection methods (Oguri and 
Tsutsumi 1972), nonsurgical transfer (Oguri and Tsutsumi 1974), superovulatory 
treatment (McCue 1996), transport of cooled embryos (Carney et al. 1991), and suc-
cessful cryopreservation of embryos (Yanamoto et  al. 1982). Further success of 
embryo transfer practices resulted from the establishment of transfer centers with 
large recipient herds, as well as breeding associations which accepted that mares 
could have more than one foal per year.

8.2  Techniques of Equine Embryo Transfer

8.2.1  Collection and Quality Evaluation of Equine Embryos

Collection of equine embryos by uterine flushing is generally performed between 
days 6.5 and 9 after ovulation (=day 0). Equine embryos have a rather extended 
oviductal passage and only enter the uterus 144–156 h after ovulation (Battut et al. 
1997). A uterine collection attempt earlier performed than this is mostly unsuccess-
ful. From day 9 after ovulation on, the embryo becomes relatively large, and the 
possibility to damage it during collection, storage, or transfer increases significantly 
(McKinnon and Squires 1988a, b; Carnevale et al. 2000). Thus embryo collection is 
commonly performed on day 7 or 8 because recovery rates are high and the 
(expanded) blastocysts can be easily recovered and handled. For embryo recovery, 
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the tube of an embryo collection tube system (commercially available) is carefully 
introduced through the cervix into the uterine body. Inflating the balloon at the end 
of the tube keeps the catheter in place and closes the uterine lumen at the uterine 
side of the cervix. Depending on the size of the mare and uterus, repeatedly 1–2 L 
of medium is flushed into the uterus. After a short transrectal massage, the medium 
is collected and—depending on the method—passed through a filter, which retains 
the embryo. Different collection media can be used, e.g., phosphate-buffered saline 
with fetal bovine serum or bovine serum albumin, ready-to-use Ringer lactate, or 
special embryo collection media, which are commercially available. An important 
feature of the collection media is that they prevent the embryo from sticking to the 
plastic of the tube system. The media should be pre-warmed to 32–35 °C. The flush-
ing steps are repeated 3–4 times. If the embryo is not recovered, the same procedure 
can be repeated after treatment with oxytocin. This is supposed to increase collec-
tion rates by about 10% due to induced uterine contractions (McCue et al. 2003; 
Squires et al. 2003). If successful, the embryo can be found under a stereo micro-
scope depending on the method—directly in the in-line collection filter system or 
after sedimentation and filtration of the fluids. Size, developmental stage, and qual-
ity of the embryo should be assessed. The size usually varies between 150 μm (day 
6) and 1200 μm (day 8). Discrepancies are possible due to asynchronous double 
ovulations or delayed embryonic development. The embryos are usually at the mor-
ula, blastocyst, or expanded blastocyst stage. The quality is judged on a scale from 
1 to 4 (excellent to degenerated, McKinnon and Squires 1988a, b) (Fig. 8.1).

Donor mare

Recipient mares

Synchronization,
gyn. examinations,
insemination

Ovulation

-2

-2 0 + 5 to 7
4 days after

ET
Age of embryo
12 to 16 days

-1 0 +5.5 to 6.5 +7 + 7.5 + 8 + 9

Re-
examination
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Induction
of

ovulation
Ovulation Gyn. examination

Embryo transfer
D 5: morula / early

blastocyst
D 6 to 7: (expanded)

blastocyst

Pregnancy
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Morula enters
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Fig. 8.1 Chronology of equine embryo transfer procedures. Typically donor and recipient mares 
follow a timed embryo transfer process which is orientated to the day of ovulation (day 0). The day 
of embryo collection from the donor mare is mainly defined by the desired embryo treatment 
(direct transfer, cooled transport, cryopreservation). Factors causing a delay in fertilization or 
embryonic development of 0.5–1  day should be considered for planning embryo collection. 
Recipient mares should ideally ovulate 24–48 h after the donor
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8.2.2  Embryo Treatment and Direct Transfer

In the early years, transfer of embryos was conducted under general anesthesia and 
laparotomy (Allen 1982). Subsequently the uterus was visualized and grasped man-
ually after flank incision of the sedated, standing horse (Iuliano et al. 1985; Squires 
et al. 1985). Finally, noninvasive transcervical approaches, as performed nowadays, 
have been advanced to highly efficient methods with regard to time and costs. 
Surgical transfer methods have become obsolete, also for ethical reasons.

Prior to transfer of the embryo, it is washed several times in embryo medium to 
eliminate adhesive cells or microorganisms and to provide a stable environment for 
the embryo. If the recipient mare is nearby available and has been synchronized to 
the donor mare, the embryo can be transferred directly. The embryo is placed in a 
0.25 or 0.5 ml straw with the embryo medium (Jasko 2002). The transfer pipette, 
which is similar to an insemination pipette, is aseptically and atraumatically passed 
by manual palpation through the cervix into the uterine body, and the embryo is 
expelled. Alternatively the use of a speculum and a specially adapted forceps has 
been reported (Wilsher and Allen 2004).

8.2.3  Cooled Transport

One of the most important developments in equine embryo transfer was the finding 
that embryos can be stored or transported at 5 °C for 24 h without impairing viabil-
ity (Carnevale et al. 1987; Moussa et al. 2004; McCue et al. 2011). Especially in 
North and South America, the number of transported equine embryos has greatly 
increased (Squires et al. 1999), but also in Europe this technique has been instru-
mental for making embryo transfer programs more widely accepted. The advan-
tages of embryo cooling and subsequent transfer reduce factors encountered with 
availability of recipient mares, i.e., owners from mares enrolled in an embryo col-
lection program are not required to provide the recipient mare. Instead, embryos can 
be shipped to institutions with large recipient herds. Different media are available 
for transportation. Using Ham’s F-10 medium for 24-h storage results in similar 
pregnancy rates as observed in direct (fresh) transfer (Carney et al. 1991). Since this 
medium requires special ambient conditions, its practical use is limited, and there-
fore other commercial holding media are more generally used (Embryo Holding 
Solution®, ViGro Holding Plus®) with good pregnancy results. For cooled transpor-
tation several passive cooling devices are commercially available.

8.2.4  Embryo Cryopreservation

Freezing equine embryos after collection and prior to transfer has even further 
increased the options of embryo transfer technology. Embryos can be transported 
worldwide, and the time of embryo collection is not limited to the desired breeding 
time during the year. As long as the mare is cycling, embryos can be readily col-
lected and stored frozen. Transfer then takes place whenever it is convenient. This 
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has a positive impact on the planning of the breeding season. If more than one 
embryo is obtained from a single collection (multiple ovulation), but only one mare 
is available as recipient, the other embryo(s) can be stored frozen. Especially for 
endangered breeds or breeds with small numbers, cryopreservation of embryos 
allows the establishment of gene banks and maintenance of biodiversity. By using 
embryo cryopreservation, female genetics of a breed are also partially preserved, 
while so far usually only male genetics can be preserved as frozen semen.

The first foal from a frozen embryo was born in 1982 (Yanamoto et al. 1982). 
Since then, great efforts have been made to modify freezing methods to obtain 
improved survival of frozen/thawed quality embryos and to yield higher pregnancy 
rates. Pregnancy rates of 50–60% with the traditional slow freezing method can 
only be achieved if the embryo is smaller than 300 μm in diameter (Czlonkowska 
et al. 1985; Slade et al. 1985; Skidmore et al. 1991; Squires et al. 2003). In order to 
collect embryos of this small size, the uteri had to be flushed on day 6–7 after ovula-
tion. However, this rather early approach was usually associated with lower recov-
ery rates of embryos. Freezing larger embryos generally leads to a high rate of 
embryonic apoptosis (Tharasanit et al. 2005). On days 6 or 7, a glycoprotein capsule 
forms around the equine embryo (Betteridge et al. 1982; Flood et al. 1982), which 
is critical for embryo survival (Stout et al. 2005). This capsule is considered to be 
responsible for the higher apoptosis rate after freezing. Capsule thickness is corre-
lated with bad freezing results probably due to the fact that the capsule hinders 
penetration of cryoprotectants (Legrand et al. 1999; Bruyas et al. 2000). Glycerol is 
used as standard cryoprotectant. Alternatives like combinations of glycerol with 
1,2-propanediol or sucrose (Ferreira et al. 1997) and ethylene glycol (Bruyas et al. 
2000) have been tested, but did not improve cryosurvival.

For conventional slow freezing, the temperature reduction must be tightly con-
trolled, which is only possible by using expensive controlled freezing equipment. 
Due to these limitations of the slow freezing method, vitrification has become more 
commonly and generally applied for equine embryos. During vitrification, the 
embryo and surrounding media are transformed into a glassy state, thus avoiding the 
formation of ice crystals. Vitrification solutions contain extraordinary high concen-
trations of cryoprotectants, which allow for a fast removal of the water in the cells. 
After exposure to vitrification solutions, the embryo is directly plunged into liquid 
nitrogen, which is associated with an ultrarapid cooling rate. For small embryos 
(<300 μm Ø), similar pregnancy results can be achieved when compared to the slow 
freezing method (Oberstein et al. 2001; Moussa et al. 2005; Eldridge-Panuska et al. 
2005). Vitrification kits are commercially available and protocols can be performed 
without special equipment. This renders vitrification more practical and it is increas-
ingly established as the standard method.

Larger embryos (>300 μm) at the expanded blastocyst stage have been considered 
to be unsuitable for cryopreservation (Eldridge-Panuska et al. 2005; Barfield et al. 
2009). However, recently progress has been made allowing successful cryopreserva-
tion of such embryos. It has been demonstrated that the collapse of the blastocoel 
prior to cryopreservation is essential for the survival of large embryos (>300 μm Ø) 
after warming. To achieve collapse, embryos are punctured using a micromanipula-
tion unit and a fine micropipette. The blastocoel fluid is aspirated, and the embryos 
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are immediately vitrified using a similar technique than the one used for small 
embryos. First studies reported pregnancy rates between 70% and 83% after transfer 
of these embryos (Choi et al. 2011; Diaz et al. 2016; Sanchez et al. 2017). If a micro-
manipulator is not available, it is also possible to manually collapse large equine 
embryos before vitrification using a 25-gauge needle to puncture the capsule and 
remove fluid (Ferris et al. 2016). In the near future, cryopreservation of large embryos 
will probably render equine embryo transfers less expensive (no recipient synchroni-
zation necessary) and more efficient (later collection possible, transfer at perfect 
time) which in turn will lead to establishing an international equine embryo market.

8.3  Influences on Embryo Collection Success

It is sometimes difficult to assess whether the collection procedure was unsuccessful 
or if there was no embryo to begin with. Assuming that the collection has been per-
formed correctly by skilled practitioners, an embryo is generally recovered if present 
in the uterus (Hartman 2011), and recovery rates are indicative for insemination suc-
cess (Campbell 2014). Very important factors influencing the success rates are 
insemination management and general fertility of the mare and stallion (Squires 
et al. 1999; Stout 2003). A satisfactory collection rate can only be expected from 
healthy mares without fertility problems in their breeding history, and rates drop 
dramatically if the mare is older than 13–15 years (Squires et al. 1985; Vogelsang and 
Vogelsang 1989; McCue et al. 2010; Marinone et al. 2015). Overall, embryo recov-
ery rates are considered to be about 50% per collection attempt (Squires and McCue 
2007). From reproductively healthy young mares bred with semen of good quality, 
embryo collection rates reach 70–75%, whereas only 20–30% of collection attempts 
are successful in mares with a history of reproductive restrictions (McCue and 
Squires 2015). For competing mares it needs to be considered that extensive exercise, 
heat, and stress potentially impair fertility and consequently embryo collection rates 
and quality (Mortensen et al. 2009; Kelley et al. 2011; Smith et al. 2012). Semen 
quality significantly influences embryo recovery rates (Love et al. 2015). Mares bred 
with fresh or cooled-transported semen provide a 20% higher rate than mares insemi-
nated with frozen/thawed semen, respectively. Embryos of smaller sizes can be 
recovered if donor mares are bred with frozen/thawed semen. This might be due to a 
delay in fertilization or embryonic development of 0.5–1 day, which should be con-
sidered for planning embryo collection (McCue and Squires 2015). Embryo recovery 
rates are similar for collections from day 7 to day 10 after ovulation. Collection on 
day 6 has significantly lower success rates (Jacob et al. 2012).

8.3.1  Multiple Ovulations and Superovulation

The mare usually ovulates one follicle per cycle. Nevertheless, double or even triple 
ovulations are possible. These occur with a probability of ~22% in thoroughbreds and 
~15% in warmblood breeds (Newcombe 1995). Some mares or mare families and 
also some breeds are significantly more likely to have multiple ovulations (Panzani 
et al. 2014). Increasing age of the mare also increases the probability of more than one 
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oocyte being ovulated (Marinone et al. 2015; Panzani et al. 2014). Twin pregnancies 
after multiple ovulations are undesired and require adequate management. Multiple 
ovulations may increase recovery rates (Squires et al. 1985; Squires et al. 1987; Nagao 
et  al. 2012). Induction of multiple ovulations would therefore greatly increase the 
overall success rates of embryo transfer programs. Unfortunately, superovulatory 
treatments in horses yield only very low success rates compared to other species. The 
anatomical structure of the equine ovary with the follicles on the inside and the rela-
tive low sensitivity of the equine FSH receptors (Combarnous et al. 1998) are likely 
involved in the failure of superovulating mares. Double ovulations can be induced 
using different protocols (McCue 1996), including equine chorion gonadotropin (Day 
1940), gonadotropin-releasing hormone (Ginther and Bergfelt 1990), porcine follicle-
stimulating hormone (Fortune and Kimmich 1993), equine pituitary gonadotropins 
(Hofferer et al. 1991), deslorelin acetate (Nagao et al. 2012), active (McKinnon et al. 
1992) and passive (McCue et al. 1993) immunization against inhibin, or equine folli-
cle-stimulating hormone (Niswender et  al. 2003). Currently, the best results with 
regard to double ovulation induction and increased embryo recovery rates are achieved 
by treatment with recombinant equine follicle-stimulating hormone (reFSH, DeLuca 
et al. 2008) alone or together with recombinant equine luteinizing hormone (reLH, 
Meyers- Brown et al. 2011). Administration of the correct doses and proportions is 
important to avoid ovulation failures or premature luteinization (Briant et al. 2004). 
Induction of more than two or three follicles does not lead to an increase in embryo 
recovery rates, as no more follicles on the same ovary can ovulate due to space limita-
tion (Riera et  al. 2006; Allen 2005). Therefore, the goal of stimulatory treatment 
should be to improve the induction of double ovulation.

8.4  Influences on Pregnancy Rates

8.4.1  Embryo Quality

The quality of the transferred embryo has a significant influence on pregnancy rates 
(McKinnon and Squires 1988a, b; McCue and Squires 2015) and on rates of early 
pregnancy loss (Carnevale et al. 2000). Most of the embryos collected are evaluated 
to be excellent or good (Grade 1–2). This is likely due to the fact that poor-quality 
embryos do not reach the uterus or degenerate prior to collection (Carnevale et al. 
2000). Recovery of morulae or very small blastocysts on days 7 or 8 after ovulation 
is an indicator for delayed embryo development. This also results in lower pregnancy 
rates after transfer (Squires et al. 1999). Embryo quality and pregnancy rates decrease 
with increasing age of the donor mare (Cuervo-Arango et al. 2017). However, cooled 
transport of embryos does not affect pregnancy rates (McCue and Squires 2015).

8.4.2  Transfer Method

The influence of the transfer method on pregnancy rates is dependent on the technical 
skill of the person performing the transfer (Squires et al. 1999; Allen 2005; Cuervo-
Arango et al. 2017), while the available equipment and techniques themselves do not 
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seem to make a difference with regard to the outcome (Jasko 2002). Transcervical 
embryo placement entails the risk to contaminate the uterus (Allen 2005); high thus 
strict hygienic measures are needed to avoid the risk of a uterine reaction. The man-
ual dilation of the cervix during transfer can induce release of oxytocin or PGF2α 
(Handler et al. 2003; Kask et al. 1997) which in turn may lead to an impaired luteal 
function or even luteolysis. Consequently, cervix manipulation and dilation should 
be as little as possible, and flunixin meglumine can be administered as a precaution, 
although effects of this drug on pregnancy rates after embryo transfer are conversely 
discussed (Koblischke et al. 2008; Okada et al. 2018). There is no solid evidence so 
far that the nonsurgical transfer actually influences luteal function. Nevertheless, in 
practice nonsteroidal anti-inflammatory drugs, corticosteroids, antibiotics, and pro-
gesterone are often supplemented to recipients to avoid early pregnancy loss caused 
by inflammation or infection of the genital tract and luteolysis.

8.4.3  Cycle Synchronicity of Donor and Recipient

One of the major influences on transfer success, i.e., pregnancy rate, is the syn-
chronicity of donor and recipient mare. As mentioned earlier, freezing the embryo 
or using mares from a recipient herd can avoid the cycle synchronization. In these 
cases it is still crucial to transfer the embryo at the correct time after ovulation. The 
basic requirement to achieve this is a proper mare management and ovulation con-
trol. Similar pregnancy rates have been achieved, if the recipient mare ovulates 
1 day before or up to 5 days after the donor mare. Ovulation out of this time frame 
leads to a dramatic drop in pregnancy rates (Jacob et al. 2012). Ideally, the recipient 
mare ovulates 24–48 h after the donor.

Cycle length variation and especially the differences in reaction to hormonal 
treatments sometimes make it difficult to achieve synchronicity with just one recipi-
ent mare. Using two or three recipient mares treated with different hormonal regimes 
(Allen 2005) ensures to have at least one matching recipient when performing a 
direct transfer. Many synchronization protocols have been created for donor and 
recipient mares (Rocha Filho et al. 2004; Greco et al. 2012; McCue and Squires 
2015; Pinto et al. 2017; Oliveira Neto et al. 2018). Generally, estrus is induced with 
PGF2α while the mares are in the active luteal phase. Daily follicle controls should 
be performed as soon as both mares show estrus symptoms. Ovulation is induced in 
the donor mare when she presents a follicle of at least 35 mm using human chorion 
gonadotropin or GnRH implants. Ovulation should occur 30–48 h after application 
and needs to be monitored. In the recipient mare, ovulation should be induced 24 h 
after the donor mare or as soon as ovulation has been diagnosed in the donor. 
Assuming the recipient mare reacts normally and also ovulates after 30–48 h, the 
desired synchronicity is achieved. Besides the recipient’s day of ovulation relative 
to the donor mare, the size and expected developmental stage of the collected 
embryo should be considered for recipient selection. Especially embryos of an early 
developmental stage (morulae, early blastocysts) should be transferred to recipients 
at day 5 after ovulation.
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8.4.4  Age, Fertility, and Size of the Recipient

Donor mares are usually selected very carefully by their breeding value. The selec-
tion of the recipient mare should be done with the same care. Age, general health, 
fertility, and size of the recipient have an impact on transfer success and the devel-
oping foal. The recipients should be in the range of 3 and 12 years old. In older 
mares the risk of pregnancy loss increases due to endometrial degeneration (Ricketts 
and Alonso 1991). The recipient should be free of any abnormalities (malpositioned 
vulva, abnormal cervix), signs of degeneration of the endometrium (endometrial 
cysts), or signs of inflammation (fluid in the uterus, contamination). The tone of the 
cervix and uterus is critically important. Reduced tone usually leads to a higher risk 
of pregnancy losses (Carnevale et al. 2000). The likelihood of pregnancy increased 
with increasing length of the recipient’s preceding estrus which is correlated with 
the duration of endometrial edema (Cuervo-Arango et al. 2017). Complete breeding 
soundness examination (uterine culture/cytology or endometrial biopsy) is recom-
mended prior to the start of synchronization treatment. The mammary gland should 
also be examined to avoid problems during nursing of the foal.

The size of the recipient mare relatively to the donor mare and stallion can affect 
intrauterine development of the fetus and postnatal development of the foal. 
Transfer of embryos into smaller mares potentially leads to delayed growth, which 
might not be completely compensated after birth (Allen et al. 2004). The transfer 
of thoroughbred embryos into ponies can lead to physical and ethological immatu-
rity after birth (Ousey et  al. 2004). Smaller size differences between donor and 
recipient are compensated after birth. Other influences on the foals have been 
described (Peugnet et al. 2014), but all possible effects are not fully understood yet. 
Preliminary data show that contrary to general breeders’ opinion, the character of 
embryo transfer offspring is not significantly affected by the recipient mare, and 
behavioral traits might be associated mostly with genetics of the parents (Burger 
et al. 2008). Further investigations on possible impact of recipient mares’ behavior 
and metabolism are needed as well as on epigenetic effects (Chavatte-Palmer et al. 
2016).

8.5  Benefits of New Technologies for Embryo Transfer

Equine embryo transfer allows the direct evaluation of the embryo. Besides the 
previously described quality assessment, it is also possible to perform genetic anal-
ysis of the embryo prior to transfer. This technique is known as preimplantation 
genetic diagnosis (PGD) and generally involves the collection of a few cells from 
the embryo using an inverted microscope equipped with a micromanipulation sys-
tem. After collection, the cells are genetically analyzed; this procedure does not 
compromise the viability of the embryo. Genetic diagnosis can also be used for sex 
determination before transfer (Herrera et al. 2014), which is greatly desired in some 
breeds. The embryos can also be analyzed to determine the breeding value or the 
incidence of genetic disorders (Guignot et al. 2015).
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The alternative to embryo collection is producing embryos in vitro. Oocytes are 
collected from mares using ovum pickup (OPU, Galli et al. 2001). In vitro fertiliza-
tion by coincubation of oocyte and sperm has been unsuccessful in the horse. 
Instead, fertilization is achieved using intracytoplasmic sperm injection (ICSI, 
Hinrichs 2010). The combination of these two techniques enables breeding of mares 
and stallions that would otherwise not be suitable. Embryos from mares with repro-
ductive organ pathologies can be produced. Additionally, immotile stallion sperm or 
sperm of low availability can be used very effectively. A recent increase in the effi-
ciency of these two techniques has allowed its application even in commercial pro-
grams (Choi et al. 2002; Dell’Aquila et al. 1997; Galli et al. 2007; Galli et al. 2014).
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9Endoscopy in Cattle Reproduction

Vitezslav Havlicek, Gottfried Brem, and Urban Besenfelder

Abstract
Final follicle maturation, ovulation and early embryo development are highly 
dynamic processes which ultimately result in establishment of pregnancy and the 
birth of healthy offspring. Any intrinsic or extrinsic changes of the environmental 
conditions, in vivo and in vitro, including deviations caused by exogenous hor-
monal stimulation may have negative effects on conceptus development. To date, 
many technologies have provided important information contributing to our 
knowledge of early embryo development. Among these techniques, the applica-
tion of endoscopy for the study of reproductive processes, characterised by a 
minimal invasive transvaginal entry into the peritoneal cavity, plays a significant 
role. Once established, endoscopy allows the direct visualisation of the surface 
of ovaries, oviducts and uterine horns in accordance to pathophysiological 
changes and enables the collection and transfer of oocytes and embryos at vari-
ous developmental stages. This technology is particularly suitable for combining 
in vivo and in vitro embryo culture in order to pinpoint critical checkpoints on 
this process. This type of translocation from laboratory to the animal and back 
provides a unique chance to create novel designs and to increase understanding 
of early reproductive events.
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9.1  Introduction

Embryo transfer has become an integral part of science and farm breeding manage-
ment. Many decades of embryo transfer activities in different species historically 
attest to the impact of this reproductive technology. Apart from the routine application 
of embryo transfer technologies, continuous improvement of these techniques opens 
new avenues especially when combining different disciplines. Much work has been 
done in many species. The focus of this chapter is on the use of endoscopy as a tool to 
manipulate and to better understand early reproductive events, particularly in cattle. 
The use of endoscopy in the bovine species will be highlighted in this chapter.

Based on the current developmental progress in science and technology, much 
and detailed information can be obtained by subdividing this topic into cells/
embryos and animals/donor and recipient management.

9.1.1  The Embryo

Embryo blastomeres represent targets for many diagnostic tools for genetic selection 
and reduction of the generation interval which significantly enhances efficacy and 
accelerates progress for research and commercial purposes. Besides the production of 
embryos via superovulation programmes, the in vitro culture of embryos allows visu-
alisation of developmental steps from oocyte maturation and fertilisation to embryo 
cleavage up to the blastocyst stage and allows access to stages of early embryo devel-
opment which are normally hidden and inaccessible when conventionally collecting 
embryos from the uterine horns. Although in vivo and in vitro methods are used to 
generate large numbers of embryos, the outcome of embryo culture is highly variable 
and ranges from early embryo death (Wiltbank et al. 2016) to normal development of 
the conceptus, implantation and birth of offspring. In order to understand the key 
mechanisms involved in early embryogenesis, many disciplines have been attracted, 
and major contributions have been made such as increasing visualisation by histologi-
cal examinations (embryo structures, cell cleavage, degeneration, atresia; Abe and 
Hoshi 2003; Leidenfrost et al. 2011), facilitating and accelerating genetic evaluation 
using expression analyses (Gad et al. 2012), epigenetic approaches (Salilew-Wondim 
et al. 2015; Shojaei Saadi et al. 2014a), embryo genotyping (Thomasen et al. 2016; 
Shojaei Saadi et al. 2014b) and focusing on specified pathway analyses (Demant et al. 
2015; Van Hoeck et al. 2011; Aardema et al. 2013).

9.1.2  Donor and Recipient Management

Many protocols have been experimentally proven to optimise embryo collection and to 
promote pregnancy following embryo transfer. To achieve this, detection strategies have 
been established for a better assessment of animal synchronisation, including precise 
estimation of heat and time of ovulation (Roelofs et al. 2010), development of the corpus 
luteum (Bollwein et al. 2013) and evaluation of the hormonal status and, in turn, the use 
of hormones for optimal synchronisation (Bó et al. 2010; Pereira et al. 2013). Besides 
slaughter, surgical collection allows the recovery of uterine as well as tubal-stage 
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embryos. However, it is an invasive procedure which requires particular facilities and 
expertise (Newcomb and Rowson 1975; Wolfe et al. 1990). Embryo transfer using the 
surgical route provides an unbiased visual access to the ovary and its corpus luteum, the 
oviduct and the uterine horns. Hence, this technique allows a controlled manipulation, 
i.e. the successful and precise transfer of embryos very close to the uterotubal junction. 
Overall, surgical manipulation has been described as being superior to non-surgical 
transfer (reviewed by Hasler 2006, Newcomb et al. 1980); however, due to the easy 
applicability, including ethical aspects, non-invasive techniques are the most preferred. 
The application of ultrasound is appropriate for detection of ovarian structures such as 
number and size of follicles and corpora lutea and for pregnancy detection. Surgery 
provides unimpeded optical access to reproductive organs, whereas ultrasound presents 
us with an echo modified by the density of the tissue, thus producing a depth effect. 
Consequently, ultrasonography is well accepted, being more reliable for differentiation 
of ovarian structures than palpation (Ginther 2014; Smith et al. 2014). Overall, monitor-
ing cyclic activity by ultrasound images has a beneficial effect on optimization of the 
management of bovine recipients (Guimarães et al. 2015).

9.1.3  Endoscopy

The use of endoscopy provides more options in animal reproduction. It is a minimally 
invasive procedure, providing direct access to the reproductive organs. However, cur-
rently the frequency of routine application in cattle is limited only to a small number of 
teams (Reichenbach et al. 1994; Santl et al. 1998; Besenfelder and Brem 1998; Wirtu 
et  al. 2010). Initially, there were some successive attempts to perform endoscopic 
access via the lumbar and mid-ventral area (Sirard and Lambert 1985; Fayrer-Hosken 
et al. 1989; Laurincík et al. 1991). But this route has been replaced by the transvaginal 
entry into the abdominal cavity (Reichenbach et al. 1993). In this respect, some ground-
breaking work has been carried out in other species such as rabbits, swine and small 
ruminants (Besenfelder and Brem 1993; Besenfelder et al. 1994, 1997) all of which 
have contributed to the refinement of this technique in the bovine species.

There are some fundamental characteristics of this technique which make it an 
attractive method for cattle reproduction:

 – The endoscope consists of an optical axis having a small diameter causing mini-
mal lesions.

 – Fibre optic for visualisation and illumination of organs.
 – Extra channels and tubes for assisting manipulation.
 – Minimal anaesthetic intervention.
 – Unique in situ approach, avoiding displacement of organs.
 – Prevention or minimising post-traumatic damages.
 – Repetitive use of the same animal possible.
 – Applicable for multiple purposes (OPU, in  vivo culture, embryo collection, 

embryo transfer).

As endoscopy can be used to study final follicular growth, ovulation and early 
embryo development, it combines development of early embryos derived from 
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in vivo or in vitro for scientific as well as commercial purposes especially when 
looking at generating a high amount of developmentally competent embryos and, 
moreover, can be used as a tool to study the loss of embryos during the early stages 
of development (Lucy 2001; Diskin and Morris 2008).

9.2  Development of Laparoscopic Access to Ovaries 
and Oviducts

Attempts have been made to gain access to the oviducts of cattle in order to recover 
early stage embryos or ensure optimal culture conditions for in vitro matured and 
fertilised embryos. Initially, access to the bovine oviducts was performed surgically 
(Trounson et al. 1977) or through surgically prepared and cannulated fallopian tubes 
of a recipient cow (Jillella et al. 1977). Subsequently, the surgical procedure in cat-
tle was replaced by the use of laparoscopy to minimise invasive access, manipula-
tion stress and postsurgical complications and care. Laparoscopy provides a novel 
visual and manipulative approach to the bovine genital tract which serves as a basis 
for many applications such as recording physiological processes including changes 
during the oestrous cycle and pregnancy, recovery of oocytes from ovaries (Lambert 
et al. 1986; Sirard and Lambert 1985) and the recovery and transfer of early stage 
embryos via the oviducts. Fayrer-Hosken et al. (1989) developed a technique for 
transferring embryos into the oviduct using a bronchoscope. The manipulation of 
oviducts, ligaments and adjacent organs was done using a Semm’s atraumatic for-
ceps. The laparoscope and forceps were placed in the right paralumbar fossa. 
Mesovarium and fimbria of the oviduct ipsilateral to the ovulation were grasped by 
atraumatic forceps, and a Tom Cat catheter loaded with embryos was inserted into 
the oviduct. The transfer of two- to four-cell stage bovine embryos into the oviducts 
of four synchronised cows resulted in the birth of one healthy calf. Later, Reichenbach 
et al. (1993, 1994) described a simplified method for repeated laparoscopic explora-
tion of reproductive organs and for aspirating oocytes from follicles of cows and 
heifers. The most important improvements they suggested were based on the trans-
vaginal entry into the peritoneal cavity. A universal tube together with a blunt trocar 
was placed via the vagina in the middorsal area of the fornix. The blunt trocar was 
replaced by a traumatic trocar and introduced through the vaginal wall into the peri-
toneal cavity. When the traumatic trocar was pulled out of the universal tube, the 
slight peritoneal negative pressure caused suction of air into the cavity, necessary to 
have sufficient space for further manipulation under optical control. The bi-tubular 
system bearing the endoscope and the aspiration line was inserted into the universal 
tube. The ovaries were presented and navigated by slowly twisting in front of the 
endoscope via rectal manipulation. This procedure allowed the determination of the 
ovarian status and the correct positioning of follicles for ovum pickup. Reichenbach 
and co-workers concluded that this technique was suitable for repeated oocyte 
recovery without affecting animal fertility.

When using this transvaginal procedure for accessing uterine horns and ovaries, 
Besenfelder and Brem (1998) showed that it was possible to access the oviducts as 
well. In order to maximise the benefit from the oviductal impact on the developing 
embryo, special attention was paid to the preparation of animals. Animals were 
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deprived of feed for 12 h and restrained in a crush. An epidural anaesthesia using 
procaine hydrochloride guaranteed rectal manipulation by suppressing rectal con-
tractions. After introduction of the universal tube into the cavity, the amount of air 
which inflates the abdomen was gradually regulated to avoid the formation of a 
voluminous peritoneal space which has been considered to negatively affect careful 
manipulation of reproductive organs. The ultimate objective was to act in situ, to 
accurately determine the ovarian response to hormonal treatment and to avoid any 
kind of disproportional manipulation causing hyperaemia or bleeding (see Fig. 9.1). 
After manipulation, the air from the peritoneal cavity was released using a vacuum 
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Fig. 9.1 Representative images of transvaginal endoscopy in cattle: (a) Graafian follicle showing 
luteinisation at the follicular basis; (b) ovary with a double ovulation at Day 1 and (c) at Day 3; (d) 
crown area of a Day 5 corpus luteum where the pulsation of blood vessels in the central dent could 
be observed; (e) tip and (f) rear of the endoscopic equipment (endoscope, bi-tubular working chan-
nel, traumatic and blunt trocar and universal tube); (g) universal tube plus an inserted blunt trocar, 
universal tube with an inserted traumatic trocar, universal tube and an inserted bi-tubular channel 
bearing the endoscope; (h) follicle 12 h before the expected time of ovulation and a regressing 
corpus luteum next to each other; (i) superstimulated ovary displaying Day 3 corpora lutea; (j) 
view of the donor animal during flushing showing the endoscope plus the uterine flushing catheter; 
(k) transfer glass capillary positioned parallel with the ampulla and (l) metal flushing catheter dur-
ing introduction into the ampulla
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pump, and the metal tube containing the endoscope was pulled out. Any further 
therapeutic treatment was not necessary (Besenfelder and Brem 1998; Besenfelder 
et al. 2001).

9.3  Transfer of Single Embryos into the Oviduct

Our first studies focused on the feasibility of transvaginal endoscopy as a method 
enabling the transfer of early stages of in vitro produced bovine embryos into the 
oviducts (Besenfelder and Brem 1998). The manipulation system consisted of a 
1 ml syringe connected to a perfusor tube and a curved glass capillary. This system 
was entirely filled with medium and the embryos were loaded in the glass capillary. 
After insertion of the endoscope into the abdominal cavity, the side of ovulation was 
identified, and the quality of the corpus luteum (morphology and age) was esti-
mated. The glass capillary was inserted via the infundibulum about 5 cm deep into 
the ipsilateral oviduct, and embryos were deposited in about 50 μl of medium in the 
ampulla. After overcoming initial problems, the duration of endoscopic manipula-
tion now takes about 10 min.

First experiments describing the transfer of early stages of in  vitro produced 
embryos in 24 animals resulted in the birth of eight calves. All of the short-term 
in vitro cultured and transferred embryos delivered to term with calves having a 
normal birth weight. In contrast, one embryo which had been cultured to the morula 
stage before transfer yielded an oversized calf which had to be delivered by caesar-
ean section. These first data confirmed that the minimal invasive access to oviduct 
used is suitable for successful transfer of early tubal-stage embryos into a physio-
logical environment (Besenfelder and Brem 1998).

9.4  Recovery of Early Embryo Stages from the Oviduct

Based upon the success of these first transfer experiments, the next target pursued 
aimed at collecting early stage bovine embryos from heifers by endoscopic flushing 
(Besenfelder et al. 2001).

For this purpose, the manipulation system was slightly adapted in order to allow 
oviduct flushing. The flushing system consisted of a 20 ml syringe, a perfusor tube 
and a curved metal tube with an olive in the front acting as palpation marker during 
fixation in the oviduct. After introduction of the metal flushing tube into the ampulla, 
the tube was fixed inside by slight pressure of thumb and forefinger around the 
olive. Later, the metal tube has been modified in order to enable flushing without 
digital fixation. For that purpose, numerous lateral holes were drilled and covered 
by a silicon tube. Consequently, increasing flushing pressure resulted in the inflation 
of the silicone tube similar to form a balloon which hermetically seals the oviduct 
and avoids reflux of flushing medium during the oviductal flushing process.

The embryos were flushed orthograde into the tip of the uterine horns where a 
uterine embryo flushing catheter was fixed as is normally done in MOET 
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programmes for collection of Day 7 embryos. The oviducts were flushed with 
40–60 ml of medium via the uterotubal junction in the direction of the tip of uterine 
horn. Flushing medium with embryos passed into the uterine embryo flushing cath-
eter connected to an embryo filter. First signs of successful tubal flushing were 
obtained when a medium flow from the uterine horns into the embryo filter could be 
observed. Additionally, the uterine horns were flushed with 300–500 ml medium 
each to ensure that a maximal number of embryos located close to the tip of uterine 
horns were recovered.

The oviductal flushing has been developed stepwise (Besenfelder et al. 2001). 
First, single-ovulating animals were flushed following unilateral flushing of super-
ovulated donors. The procedure became successful through continuous refinement 
and tuning of the system and practice. Ultimately, the oviducts of superovulated 
animals were flushed bilaterally. In total, it was shown that nearly all oocytes and 
embryos could be recovered from oviduct flushing. In some cases, mainly depend-
ing on the success of hormonal treatment, it was difficult to record the exact num-
bers of those corpora lutea which were close together on the surface of the ovary 
forming one big confluent luteal area.

Once developed and established, this flushing method has been used for studies 
examining the effect of different hormonal treatments, developmental kinetics and 
repeated collection on embryo recovery (Besenfelder et  al. 2008). In a study in 
which 119 superovulated animals using either FSH or eCG were bilaterally flushed, 
more than 1400 oocytes/embryos at various stages were collected. The flushing of 
all these animals illustrated the correlation between hormones and ovarian responses, 
including different sizes and appearances of follicles and corpora lutea and embryo 
cleavage during the first days of development. There was no negative effect of 
repeated flushing which confirmed the usefulness and applicability of this method.

9.5  In Vivo Culture of Bovine Embryos

During the last two decades, the production of bovine embryos for commercial 
purposes significantly increased. According to the data collated by the International 
Embryo Transfer Society (www.iets.com), more than one million bovine embryos 
are now produced annually. Over 600,000 transferable in  vivo-derived embryos 
were collected in 2014, and another almost 600,000 bovine embryos were produced 
in vitro (Perry 2015). The increase in the in vitro production of bovine embryos has 
been most dramatic in the last 10 years, mainly due to an exponential increase in the 
use of the technology in Brazil, which now accounts for most of the commercial 
in vitro embryo transfer activity. Moreover, in the context of genomic selection in 
animal breeding, there is a boom awaited in the field of IVP mainly to reduce gen-
eration interval and increase selection pressure (Ponsart et al. 2013).

Prerequisites for successful and efficient production of embryos derived in vitro 
are the collection of high numbers of COCs and developmentally competent 
embryos leading to pregnancies and the birth of healthy calves. Rizos et al. (2002b) 
emphasised that the intrinsic quality of the oocyte is the main factor affecting 
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blastocyst yields, while the conditions of embryo culture play a pivotal role in deter-
mining blastocyst quality.

It has been well accepted that the in vitro environment markedly differs from the 
physiological milieu provided by oviducts and uterus, each of them capable of pre-
cisely responding to various changing demands such as the dynamic metabolic 
requirements according to each embryonic stage (Killian 2004).

The overall objective will always accomplish IVP broadly similar to oviductal 
performance by mimicking temporal changes in embryo requirements and oviduc-
tal fluid composition (Felmer et al. 2011; Wydooghe et al. 2014), using conditioned 
media (Lopera-Vásquez et al. 2016) or coculture systems with various cell types 
(Schmaltz-Panneau et al. 2015). Thirty years of research in this field have led to 
much progress, however, and from the current point of view, it seems to be an almost 
insurmountable challenge to copy in vitro the multitasking feature of the oviducts 
since regulatory key mechanisms are still not understood. Consequently, in vitro 
produced embryos qualitatively lag behind their in vivo counterparts which can be 
seen in many details such as morphology (Rizos et al. 2002a), altered gene expres-
sion (Tesfaye et al. 2004), embryo metabolism (De Souza et al. 2015), increasing 
cryo-sensitivity (Pollard and Leibo 1994) and embryo/foetal development after 
transfer and calves after birth (Young et al. 2001).

Being aware of these high demands, it is advisable to directly use tubal features 
for the improvement of embryo quality by transferring in vitro-derived embryos 
into the oviducts of temporary recipients.

In first studies attempting to benefit from the fallopian tube, an interspecies 
transfer was conducted. Bovine embryos were transferred into rabbit oviducts and 
temporarily cultured in vivo (Rowson and Adams 1972; Sirard et al. 1985). Other 
researchers cultured in vitro matured/fertilised bovine embryos in the oviducts of 
ewes (Sirard et al. 1988; Enright et al. 2000). The ewes were hormonally synchro-
nised and prepared by an intravaginal progestogen-releasing device. Early stages of 
bovine embryos embedded in agar chips or without agar were surgically transferred 
into the oviducts prior to the ligation close to the uterotubal junction. The embryos 
were recovered 4–5 days later by the same surgical procedure (reviewed by Lazzari 
et al. 2010). The practical relevance of in vivo cultured bovine embryos in surrogate 
sheep oviducts was described by Galli et al. (2001, 2003). It was shown that this 
technology could be very efficient for the production of large numbers of embryos 
for commercial purposes. Moreover, the produced embryos were comparable to 
MOET embryos especially when they had been frozen-thawed before transfer (Galli 
et al. 2001, 2003). Nevertheless, the use of progestogen-supplemented, ligated het-
erologous sheep oviducts for in vivo culture of bovine embryos actually does not 
provide the basic scientific approach necessary to reveal species-specific particu-
larities for bovine reproduction.

This in vivo approach has been accomplished in the bovine species by merging 
the endoscopic transfer with embryo collection procedure (Havlicek et al. 2005a). 
Unlike the hormonal treatment of sheep, bovine recipients are synchronised accord-
ing to the developmental stage of the embryos. Embryos are transferred during the 
early growth of a corpus luteum which involves changes and modifications of the 
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tubal epithelium to maximally meet the needs of the embryo. Hence, embryos are 
placed preferentially ipsilateral to ovulation.

In our first experiments, about 2500 embryos were transferred in groups of 10–50 
embryos each after 1–3 days of in vitro culture into the oviducts of synchronised 
heifers. Recollection was performed 4–6 days later. The recovery rate of embryos at 
Day 7 revealed the different migration of embryos from oviducts in uterine horns. 
After solely flushing of uterine horns followed by a second flush using a combined 
flushing of both oviducts and uterine horns, only about half of embryos were found 
in the uterus, whereas the other half of the embryos remained in the oviducts. Hence, 
combined flushing of oviducts and uterine horns was recommended for further and 
effective embryo recollection after in vivo culture in the oviduct (Havlicek et al. 
2005a, b).

In the following studies, Wetscher et  al. (2005a, b) examined factors such as 
temperature, embryo structure, developmental stage, gamete co-incubation and 
in vitro maturation influencing in vivo culture efficiency:

 1. Our first in  vivo culture results revealed variable success reflecting the high 
demand of embryos at a very sensitive stage. Changes of medium for the trans-
fer, a short-term decrease of temperature of the medium and long duration in 
which the embryos are kept outside the incubator prior to transfer usually 
decreased blastocyst rates.

 2. Tubal migration of transferred embryos is affected by their morphology. The 
recollection rate increased with the size of a solid matrix around the embryo. 
Therefore, the best recovery rates were obtained when zygotes were embedded 
in sodium alginate or transferred in cumulus cells. In contrast, a lower proportion 
of denuded zygotes or embryos in medium containing 6 mg/ml hyaluronan were 
recollected, probably due to disturbed migration caused by disoriented beating 
activity of the ciliated cells in the oviduct. There is much evidence that embryos 
were expelled into the abdominal cavity.

 3. Embryo transfers on Day 1 and 2 resulted in a lower recovery rates on Day 7 
compared to transfers on Days 3 and 4. In the periovulation period, the oviducts 
appear to be hyperactive compared to Days 3 and later (Ruckebusch and Bayard 
1975).

 4. Blastocyst rates correlate with the stage of transferred oocytes and embryos to 
synchronous recipient animals. The transfer of more advanced embryonic stages 
into the oviduct resulted in significantly higher blastocyst rates compared to the 
transfer of very early stages (Havlicek et al. 2005b; Wetscher et al. 2005b).

 5. Gamete intrafallopian transfer (GIFT) seems not to work very well in cattle for 
starting in vivo culture. The transfer of a mix of in vitro matured COCs with 
capacitated spermatozoa did not result in an acceptable amount of blastocysts. 
However, when COCs and spermatozoa were co-incubated for at least 3–4  h 
before transfer, there was a significant success of blastocyst development.

 6. In vitro matured oocytes are not compatible with those matured in vivo, since 
only a few blastocysts were obtained after the transfer of in vitro matured oocytes 
into the oviduct of inseminated heifers. Most of the oocytes did not show any 
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sign of fertilisation. Compared to the high numbers and concentration of sperma-
tozoa necessary to successfully accomplish in  vitro fertilisation of in  vitro 
matured oocytes, it seems most likely that failures in fertilisation were caused by 
the low number of spermatozoa in the oviduct available for fertilisation of 
in vitro matured oocytes (Ward et al. 2002). Moreover, there is also evidence that 
initiation of zona hardening occurs immediately when oocytes are in contact 
with the epithelial cells and are exposed to the oviduct-specific glycoprotein 
(Coy and Avilés 2010).

 7. The zona pellucida undergoes physical changes not only during fertilisation but 
also during the oviductal passage. Mertens et al. (2007) showed that embryos 
which migrated through the oviducts into the uterine horns and developed into 
morulae and blastocysts had a thicker ZP compared to in vitro cultured embryos. 
Histological examinations revealed an increase in the reticular part, the pores in 
the ZP were smaller in size and the surface was covered by granules. In contrast, 
the ZP of in  vitro produced embryos showed signs of degeneration (Mertens 
et  al. 2007). Besides the fact that the ZP texture reflects active molecule 
 transportation between the embryo and its environment, this structure also plays 
a role in the context of reducing sanitary risks when transferring embryos (Van 
Soom et al. 2010).

Further studies benefited from these first trials and aimed at examining the most 
critical developmental stages during the early embryo culture period, in vivo culture 
of embryos in heifers and cows (dried-off vs. milking) and embryo development 
under superovulation conditions (see Table 9.1).

In a large-scale study, numerous embryos at various stages were produced 
in vitro and then cultured in vivo for the remaining time until blastocyst stage at Day 
7 and vice versa embryos at different stages were collected from the oviducts and 
in vitro cultured until the blastocyst stage. Using expression profile analyses, it was 
shown that the most critical developmental steps were found to be around fertilisa-
tion, during embryo genome activation around the 8-cell stage and during blastocyst 
formation. The source of oocyte collection and maturation had detrimental effect on 
embryo quantity (Gad et al. 2012).

In order to examine the influence of lactation on early embryo development, 
about 2800 in  vitro-derived embryos were transferred to heifers, dairy milking 
cows and cows which were dried-off immediately after parturition. Embryos were 
recovered on Day 7. It was demonstrated that the reproductive tract of post-partum 
dairy cows was less capable of providing the adequate environment for an optimal 
embryo development compared to heifers (Rizos et  al. 2010) and dry Holstein 
cows (Maillo et al. 2012). Moreover, even the superstimulated reproductive tract 
significantly affected embryo development during the first 7  days compared to 
in vivo culture of embryos derived from superovulation donors and transfer into 
non-superovulated (mono-ovulatory) animals (Gad et  al. 2011). Overall, it has 
been shown that early developing embryos respond rapidly to even small environ-
mental changes which in turn provide a useful indicator system for inadequate 
culture conditions.
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Table 9.1 Recovery and blastocyst development of bovine embryos after in  vivo culture in 
cattle

Transferred embryos
No. of 
transferred 
embryos

No. of recovered 
embryos at Day 7 
(%)

No. of 
blastocysts 
(%) AuthorsOrigin Stage

Day of 
transfer/
recipients

In 
vitro

2–16- 
cell

D1–4/
heifers

100 31 uterus/34 
oviduct

17 (26.2) Havlicek 
et al. 
(2005a)In 

vitro
2–4- cell D1–2/

heifers
162 75 (46.3) 10 (13.3)

In 
vitro

4–8- cell D3/heifers 199 68 (34.2) 25 (36.8)

In 
vitro

1–8- cell D1–3/
heifers

1358 390 (28.7): 
recovery from the 
uterus

48 (12.3) Havlicek 
et al. 
(2005b)

In 
vitro

1–8- cell D1–3/
heifers

671 390 (58.1): 
recovery from the 
oviduct and 
uterus

105 (26.9)

In 
vitro

COCs D1/heifers 456 348 (76.3) 3 (0.9) Wetscher 
et al. 
(2005b)In 

vitro
GIFT D1/heifers 514 351 (68.3) 70 (19.9)

In 
vitro

4–8- cell D3/heifers 682 545 (79.9) 304 (43.3)

In 
vitro

GIFT D1/heifers 425 315 (74.1) 114 (36.2) Havlicek 
et al. (2010)

In 
vitro

4–8- cell D2–3/
heifers

441 264 (59.9) 108 (40.9)

In 
vitro

2–4- cell D2/heifers 1000 790 (79.0) 273 (35.5) Rizos et al. 
(2010)

In 
vitro

2–4- cell D2/lactating 
cows

800 458 (57.2) 73 (15.9)

In 
vitro

2–4- cell D2/heifers 2004 1629 (81.3) 953 (58.5) Carter et al. 
(2010)

In 
vitro

2–4- cell D2/heifers 
high P4

1673 1240 (75.7) 742 (59.8)

In 
vivo

2–4- cell D2/heifers 164 146 (89.0) 76 (52.1) Gad et al. 
(2011)

In 
vitro

4-cell D2/heifers 642 642 (88.5) 223 (39.3) Gad et al. 
(2012)

In 
vitro

16- cell D4/heifers 811 811 (76.4) 350 (56.5)

In 
vitro

2–4- cell D2/lactating 
cows

435 289 (65.6) 97 (32.6) Maillo et al. 
(2012)

In 
vitro

2–4- cell D2/
non- 
lactating 
cows

627 403 (63.9) 203 (49.3)
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 Conclusion
The application of endoscopy to embryo collection and transfer provides unri-
valled access to the reproductive tract as well as facilitating the collection and 
manipulation of various different oocyte and embryo types resulting in increased 
knowledge and understanding of embryo development under optimal environ-
mental conditions. While the use of endoscopy requires particular expertise and 
experience, this technique can be easily combined with other routine reproduc-
tive technique in order to generate large numbers of developmentally competent 
embryos for both science and commercial application.
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Abstract
For about three decades, transvaginal ultrasound-guided oocyte retrieval (OPU, 
ovum pick-up) has been successfully adapted from human reproductive medi-
cine to the use in cattle and later on in the horse. Over time, it turned out to be a 
reliable and minimally invasive method to collect (immature) oocytes from 
genetically high valuable donors on a repeated basis. While a large part of the 
success of this procedure relies on the availability of a reliable in vitro embryo 
production system, a major prerequisite remains the collection of good-quality 
oocytes. The current chapter will focus specifically on oocyte retrieval technol-
ogy. Following a detailed description of OPU equipment, the technical and bio-
logical factors affecting oocyte retrieval in living donors are discussed extensively 
with particular interest on the need of donor preparation by hormonal stimula-
tion. Attention will also be given to donor health issues related to repeated oocyte 
retrieval. Finally, a state of the art of OPU in the mare is given describing addi-
tional physiological aspects of the equine oocyte and embryo implying addi-
tional challenges both for oocyte retrieval and in vitro embryo production.
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10.1  Introduction

For several decades, puncture and aspiration of bovine (immature) ovarian follicles 
has been used to retrieve oocytes for in vitro embryo production (IVP). Several com-
prehensive reviews on IVP and embryo transfer (ET) in domestic animals have high-
lighted the availability of ‘good’-quality oocytes as the primary prerequisite for 
success (Hasler 1998; Galli et al. 2001; Merton et al. 2003; Merton 2014). Cumulus 
oocyte complexes (COCs) can be recovered from the ovaries of both slaughtered 
cows and living donors. Traditionally, post-mortem oocyte recovery was accom-
plished by follicle dissection or aspiration with a needle and syringe. However, this 
resulted in considerable variation in oocyte number and quality, largely as a result of 
differences in recovery techniques (Takagi et  al. 1992; Hamano and Kuwayama 
1993). The method of oocyte retrieval has an impact on COC morphology and sub-
sequent developmental capacity in vitro, and, in this respect, the importance of an 
intact cumulus cell investment for oocyte maturation and in vitro development has 
been described extensively (Konishi et  al. 1996; Tanghe et  al. 2002). Immature 
bovine oocytes can be divided into different quality categories based upon light 
microscopic evaluation of the compactness of the cumulus investment and the trans-
parency of the cytoplasm (de Loos et al. 1989; Hazeleger et al. 1995). Intimate con-
tact between cumulus cells and the ooplasm is established through cumulus cell 
process endings (CCPEs) that extend through channels into the zona pellucida (tran-
szonal processes). In the highest oocyte quality category (category 1), these CCPEs 
penetrate the zona pellucida and establish functional gap junctions with the oolemma 
(de Loos et al. 1991), which are absent in category 4 oocytes. Following in vitro 
maturation, the category 4 oocytes exhibit consistently low developmental capacity.

Understanding the relationship between follicle diameter and the quality of the 
enclosed COC during follicle development (Aerts and Bols 2010) is of vital impor-
tance for successful follicle and oocyte selection. The follicle constitutes a specific 
and defined micro-environment for the oocyte. Growth of the dominant follicle is 
associated with an increasing concentration of estradiol-17β in the follicular fluid, 
which therefore becomes gradually more estradiol dominated (Assey et al. 1994). 
Subordinate follicles either have a lower estradiol-17β/progesterone ratio or are pro-
gesterone dominated. Moreover, after ultrasonographically tracking follicle growth 
and regression, Price et al. (1995) noted that estradiol-17β concentrations were sig-
nificantly lower in regressing and histologically atretic compared to non-atretic fol-
licles. With respect to the influence of follicle size on oocyte quality, Arlotto et al. 
(1995) reported oocyte growth in all bovine follicle sizes studied, whereas Fair et al. 
(1995) demonstrated only a small positive correlation between oocyte diameter and 
follicle size. Overall, it appears that the increase in oocyte diameter plateaus at 
about 120 μm, when the follicle reaches 3 mm, whereas full meiotic competence is 
achieved at an oocyte diameter of 110  μm. Nevertheless, since Lonergan et  al. 
(1994) obtained more grade 1 COCs (with many layers of cumulus cells) and a 
higher number of blastocysts per oocyte from follicles with a diameter >6 mm, it is 
probable that full cytoplasmic competence is only reached somewhat later during 
follicle growth.
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From a practical reproductive perspective, aspiration of immature follicles is par-
ticularly interesting when performed on living donors, because the procedure can be 
repeated and is highly repeatable. In addition, the physiological status of the donor 
at the time of oocyte recovery can be assessed and manipulated, e.g. by the injection 
of hormones. This chapter will concentrate on follicle aspiration methods in living 
donors, with an emphasis on transvaginal ultrasound-guided follicle aspiration, also 
known as ovum pick-up (OPU), in the cow and to a lesser extent the mare. Following 
a brief description of the OPU technique per se, we will concentrate on the technical 
and biological factors that influence the success of OPU.

10.2  Oocyte Retrieval from the Living Donor Cow

The ability to puncture immature follicles within the ovaries of living donors and 
harvest the oocytes has opened new perspectives in assisted reproduction programs 
because additional female gametes can be made available for in vitro embryo pro-
duction (IVP) over an extended time period, which is not the case if the donor ani-
mal is slaughtered. In addition, OPU permits hormonal modulation of the donor’s 
ovarian activity prior to oocyte retrieval and thereby an opportunity to influence the 
quantity and quality of the retrieved COCs. A few important differences exist 
between post-mortem and in vivo oocyte retrieval. Firstly, transrectal manipulation 
of the ovary is necessary during oocyte retrieval in the living donor, to facilitate fol-
licle visualization by laparoscopic or ultrasonographic imaging. By contrast, when 
follicles in the ovaries of slaughtered cows are punctured, a specific follicle can be 
selected and punctured under direct visual control. Secondly, different mechanical 
forces play a role when puncturing follicles in vitro, compared to in vivo follicle 
aspiration with an adjustable aspiration vacuum pressure (Hashimoto et al. 1999).

Different methods have been used to repeatedly collect oocytes from living 
donor cows; these include puncturing the follicles under laparoscopic guidance 
(Schellander et al. 1989), which results in high recovery rates but has the disad-
vantage of being relatively laborious and carries the risk of adhesions developing 
at the site of puncture. Callesen et al. (1987) were the first to use ultrasonography 
to collect oocytes from living cattle, using an ultrasonographic transducer 
equipped with a needle guide via a transcutaneous approach. A transvaginal lapa-
roscopic technique was described by Reichenbach et al. (1994), during which a 
sterile trocar and cannula were directed into the abdominal cavity through the 
vaginal wall under rectal guidance; laparoscopy allowed the aspiration of the fol-
licles to be accurately monitored. Pieterse et al. (1988) modified a transvaginal 
ovum pick-up technique, originally developed for use in human reproduction 
(Dellenbach et al. 1984), for use in cattle. A big advantage of the transvaginal 
approach in cattle is that it is possible to both secure and manipulate the ovary 
per rectum so that it can be moved around the ultrasound transducer and needle, 
to present the most optimal position for puncture. As a result, a minimally inva-
sive method with high repeatability (Pieterse et  al. 1991) for oocyte retrieval 
from living donor cows became available. Becker et  al. (1996) compared 
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transvaginal OPU under ultrasonographic guidance with oocyte retrieval guided 
by endoscopic instruments. They concluded that the use of ultrasound resulted in 
better-quality cumulus oocyte complexes, although it is not entirely clear why 
endoscopic aspiration should cause more damage to the COCs. As a conse-
quence, ultrasound-guided transvaginal oocyte pick-up (abbreviated to ‘OPU’ 
for the rest of this chapter) was developed as a successful technique for repeat-
edly retrieving oocytes from selected heifers and cows of high genetic merit 
(Kruip et al. 1994), to produce large numbers of calves with known production 
traits and to shorten the generation interval in cattle breeding programs. Indeed, 
the ultimate aim was to produce more embryos and pregnancies per donor cow 
than was possible through multiple ovulation and classical embryo transfer 
(MOET) programs (Pieterse et al. 1991).

10.2.1  OPU Equipment and Procedure

An OPU system consists of three major components: an ultrasonographic scanner 
with an appropriate transducer (probe), an aspiration pump, and a needle guidance 
system connected to an oocyte collecting tube (Figs. 10.1 and 10.2). The trans-
ducer and the needle guide are commonly constructed as a single operational unit 
to enable accurate manipulation of the needle from outside the cow while bringing 
the transducer into close contact with the ovaries. Mounted alongside the trans-
ducer, the puncture needle can be visualized on the ultrasound screen when it is 
advanced into the sonographic field to enter a follicle; to facilitate visualization, it 
is helpful to have a biopsy guide on the ultrasound screen and to use needles with 
a roughened area just behind the tip that is echogenic by dint of trapping air 
(‘echogenic tip’). The needle is in turn connected to a vacuum pump by silicone 
or Teflon tubing such that follicular contents are aspirated as soon as aspiration 
pressure is applied via the vacuum pump. The follicular fluid and oocytes are col-
lected into a collection device positioned between the needle and the pump. This 
oocyte collection device can be a regular embryo filter or a simple Falcon tube 
sealed with a stopper, into which an afferent tube delivers the follicle aspirate and 
from which an efferent line is connected to the vacuum pump that applies the 
aspiration pressure (Figs. 10.1 and 10.2). Although not compulsory, prior to OPU 
cows can be sedated with detomidine hydrochloride and treated with hyoscine-N-
butylbromide to induce relaxation of the intestines. Subsequently, the faeces is 
removed from the rectum, and epidural anaesthesia is induced using 2% lidocaine 
to combat excessive straining during the transrectal manipulation. After the tail 
has been fixed to one side, the vulva and perineum are thoroughly cleaned and 
disinfected before the OPU device, containing the transducer and the needle guid-
ance system, is inserted into the vagina (Fig. 10.3). While the OPU handle can be 
manipulated with one hand outside the cow, the head of the ultrasound transducer 
is positioned cranio-dorsally to the left or right of the cervix, depending on which 
side oocytes are to be collected. Using the other hand per rectum, the operator 
fixes the ovary and holds it against the head of the transducer (Fig. 10.4) such that 
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the ovary and follicles can be visualized on the ultrasound screen (Fig. 10.5). A 
biopsy line programmed into the scanner’s software is displayed on the screen and 
indicates where the follicle needs to be positioned for successful puncture. The 
operator then advances the needle slowly forward until the vaginal wall is pierced 
and the needle is visualized entering the ultrasound field. By monitoring the nee-
dle’s position and simultaneously manipulating the ovary per rectum, the needle 

a

d

c

b

e

f

g

Fig. 10.1 Components of an OPU set up: (a) ultrasound scanner (Esaote/Pie Medical, Maastricht, 
the Netherlands) with (b) transducer and needle guidance system, inserted in the vagina of the 
donor (c). The needle is connected to the embryo filter (d), which is connected to the aspiration 
pump (e). Cumulus oocyte complexes (g) are looked for in the aspirated fluid by means of a stereo 
microscope (f)

10 Transvaginal Ultrasound-Guided Oocyte Retrieval



214

can be directed into a follicle. Once the needle enters the follicle, the aspiration 
pump is activated using the foot pedal and the follicular fluid, and COCs are col-
lected into the embryo filter which contains the oocyte collection medium. 
Subsequently, the filter contents are washed and transferred to a petri dish, and the 
oocytes are identified using a stereomicroscope, captured using a glass pipette and 
placed into maturation medium. After 24 h of maturation, they will be fertilized 
and cultured for 7 days in vitro to reach the blastocyst stage. The final outcome of 
OPU, in terms of numbers and quality of retrieved COCs, is influenced by both 
technical and biological factors (Bols 1997), both of which will be discussed in 
more detail.

a

b c

d

b

c

a
d

Fig. 10.2 (a) OPU device disassembled (a) and mounted ready for use (c and d) with a) intravagi-
nal OPU handle, b) mechanical multiple angle sector transducer – MAP (Esaote/ Pie Medical, 
Maastricht, the Netherlands), c) needle guidance system and d) oocyte collection filter. (b) Detail 
of puncture needle connected to silicone tubing

P. E. J. Bols and T. A. E. Stout



215

10.3  Technical Factors Influencing OPU Results

Since continuing advances in ultrasound technology have improved image resolu-
tion and the accuracy with which ovarian structures can be visualized (Hashimoto 
et al. 1999; Seneda et al. 2001; Singh et al. 2003; Bols et al. 2004), the ‘weakest 

Rectal wall

Vaginal wall

OPU-deviceUltrasound transducer

Ovary

Follicles

Cervix

Needle
Head of ultrasound
transducer

Fig. 10.3 Positioning of the ovary during transrectal palpation. Pressure is exerted on the ovary 
with the hand positioned intrarectally, from the direction indicated by the arrows. The bold dashed 
line delineates the scanned area

a

b

Fig. 10.4 Positioning of 
the ovary during transrectal 
palpation. The puncture 
needle penetrates the 
vaginal wall (a) when 
pushed forward. In vivo, 
the rectal wall lays 
between the hand of the 
operator and the ovary (b). 
The white dashed line 
delineates the position of 
the intravaginal OPU 
device
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link’ or component of highest concern is now the puncture needle because a sharp 
needle is a prerequisite for successful OPU (Scott et al. 1994). Traditionally, most 
operators used 50–60-cm-long needles, with an outer diameter of 1–1.5 mm, which 
are relatively simple to construct and easy to handle (Looney et  al. 1994; Bols 
1997). A major disadvantage of these needles is that they become blunt quite quickly 
and, even with regular resharpening, never regain their original sharpness. In addi-
tion, these long, non-disposable needles are relatively expensive and contain a large 
dead space. Alternative OPU systems have been developed that use disposable 18 
gauge epidural needles (Rath 1993) or cheaper, regular hypodermic injection nee-
dles (Bols et al. 1995). These needles have the additional advantages of being sterile 
and available in different diameters and lengths and easy to change.

OPU success rate is quantified firstly in terms of the oocyte recovery rate 
(RR = number of COCs per 100 follicles punctured), which is influenced by factors 
including needle diameter, aspiration pressure and operator experience (Bols 1997). 
As a result, RRs have been reported to vary between 7% and 70% for different OPU 
teams. Over the years, many different needle diameters and aspiration pressures 
have been used in either experimental or commercial bovine OPU programs (Bols 
1997), which makes it difficult to directly compare recovery rates. In addition, the 
exact aspiration pressure exerted through the tip of the needle depends on the aspira-
tion device, the length and diameter of the tubing the size and type of collection 
vessel, as well as on the needle diameter. To make comparisons possible, the aspira-
tion pressure needs to be expressed in terms of the amount of fluid (in ml) that can 
be aspirated per minute, rather than in mm Hg exerted from the vacuum pump. 
Indeed, a modest change in needle diameter can triple the rate of fluid aspiration 
without any change in aspiration pressure (Bols et al. 1996). Given the importance 
of an intact cumulus cell investment for oocyte maturation and future developmen-
tal capacity, any damage to the COC caused by the aspiration procedure has to be 
assessed for a given system so that preventive measures can be taken. Ideally, the 

a

a

b

Fig. 10.5 Ultrasound images taken during the OPU procedure. (a) The biopsy or puncture line is 
fixed on the ultrasound screen (a), indicating where the needle will appear within the scanned area; 
(b) needle point penetrates the follicular wall (white arrow)
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optimal aspiration pressure for a given OPU system should be established by punc-
turing a substantial number of follicles on ovaries from slaughtered cows. While 
various vacuum pressures and needle diameters can be tested, COC morphology 
should be evaluated following aspiration with special attention to the integrity of the 
cumulus cell investment. In this way a threshold value, or an optimal range, for 
aspiration pressure can be established that will not result in too much damage to the 
aspirated COCs but still maintain an acceptable RR. Systems that use simple dis-
posable injection needles allow such an in vitro calibration (Bols et al. 1996). The 
percentage of retrieved intact COCs usually decreases progressively as the aspira-
tion pressure increases, which is associated primarily with an increase in the num-
ber of denuded oocytes, as reported by Ward et al. (2000). As would be expected, 
higher numbers of good-quality COCs will translate to a higher number of cultured 
blastocysts produced. Aspirating selected top-quality COCs, which were initially 
retrieved following slicing of ovaries recovered from slaughtered cows, to assess the 
net damage that the aspiration procedure can cause, revealed an overall RR of 79% 
(Bols et al. 1997). In other words, one out of five oocytes was lost during the aspira-
tion process. Fortunately, an average of 82% of the recovered COCs was still sur-
rounded by a compact cumulus investment following aspiration. Thus, on average, 
around 20% of the initially good-quality COCs were microscopically damaged by 
the OPU procedure, by (partial) stripping of cumulus cells in a manner likely to 
impair the oocyte’s in vitro developmental potential (Cox et al. 1993). A final very 
important factor determining OPU outcome is the experience of the operator or the 
team that is retrieving the oocytes, as evidenced by an in-depth analysis of 7800 
OPU sessions performed in a commercial setting by Merton et al. (2003).

10.4  Biological Factors Influencing OPU Results

A substantial body of literature is available on biological factors that might influ-
ence the likelihood of blastocyst formation when in vitro embryo production (IVP) 
is based on COCs recovered via OPU. While there is no doubt that the highest blas-
tocyst rates will be obtained with the best-quality COCs (as stated above), one 
should bear in mind that the IVP procedure ‘as such’ is an extremely complex pro-
cess that critically influences the final blastocyst rate. Since discussing non-OPU 
factors that affect the success rate of IVP is beyond the scope of this chapter, we will 
concentrate on a few factors that are directly related to the OPU procedure per se.

10.4.1  Frequency and Timing of Follicle Puncture

The OPU technique has the advantage of being highly repeatable. Pieterse et al. 
(1991) punctured follicles during different oestrous cycle stages in the same donors, 
over a 3-month period. However, the presence of a dominant follicle appears to 
reduce the in vitro developmental competence of oocytes from the subordinate fol-
licles, even at a relatively late stage of dominance (Hendriksen et al. 2004). This is 
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why the dominant follicle is often removed by aspiration prior to a regular oocyte 
retrieval session 48 h later (DFR). While some studies report no effect of collection 
frequency on the number of follicles aspirated or the number of COCs collected per 
session (Garcia and Salaheddine 1998), most researchers agree that a twice-weekly 
oocyte collection schedule has a positive effect on the number of follicles available 
for puncture and the number of blastocysts that results (Bols 1997). Indeed, it can 
be assumed that the developing dominant follicle will be ablated during each ses-
sion when a cow is punctured twice a week, thereby stimulating an additional wave 
of smaller follicles to grow (Bergfelt et al. 1994).

10.4.2  Physiological Status and Body Condition of the Donor

In cattle breeding programs, OPU is generally performed on selected healthy heifers 
with excellent genetic potential for production traits that could in themselves be 
predictive for oocyte yield and the number of blastocysts produced (Merton et al. 
2009). However, OPU can be performed at various stages of a cow’s reproductive 
life; even pregnancy does not exclude OPU, since oocytes can successfully be 
retrieved during the first 3 months of gestation (Meintjens et  al. 1995; Bungartz 
et al. 1995; Reinders and Van Wagtendonck-de Leeuw 1996). Argov et al. (2004) 
saw an increase in the number of oocytes recovered when a higher proportion of 
aspiration sessions were performed in cows in early lactation. On the other hand, 
undernutrition has a negative effect on the developmental competence of recovered 
oocytes in vitro, as illustrated by the decreasing percentage of blastocysts associated 
with decreasing body condition score of the donor (Lopez Ruiz et al. 1996) and an 
increasing proportion of good-quality oocytes with increasing body condition score 
(Dominguez 1995).

10.4.3  Breed and Age of the Donor

Early reports suggested that European breeds had significantly more large follicles 
than zebu or crossbred cows (Dominguez 1995), whereas no differences in the 
proportion of normal oocytes recovered were apparent. However, over the past 
10 years, the use of OPU-IVP has rocketed in Latin-America and in particular in 
Brazil where the high fecundity of a single breed, the Nelore, has been the founda-
tion for the production of hundreds of thousands of embryos. Indeed, a single OPU 
session in an average Nelore donor cow can yield up to 50–60 oocytes, resulting in 
up to 30 in vitro embryos per puncture session (Pontes et  al. 2011). Strikingly, 
these results are obtained without any hormonal stimulation and have led some 
researchers to conclude that repeated OPU alters follicular dynamics and might 
increase follicle growth rate in zebu donor cows (Viana et al. 2010). Highly con-
trasting results have been reported in Belgian Blue donors with impaired fertility, 
which yielded an average of only 3.1 oocytes and 0.5 embryos per puncture session 
(Bols et al. 1996).

P. E. J. Bols and T. A. E. Stout



219

The use of OPU in young donors is limited by the smaller dimensions of the 
pelvis. Holstein Friesian heifers can be subjected to OPU from around the age of 
6–8 months, depending on the dimensions of the intravaginal handle and transducer 
used (Rick et al. 1996; Bols et al. 1999). Follicles in calves can also be punctured, 
but this requires a different approach to access the ovaries (Brogliatti et al. 1995). 
The major problem with prepubertal donors is the impaired in vitro developmental 
capacity of the recovered oocytes (Taneja et al. 2000), resulting in a lower overall 
efficiency of the procedure.

10.4.4  The Role of Hormonal Stimulation to Prepare Donors 
for OPU

An enormous amount of research has been done on how potential donors can be 
prepared to maximize oocyte and subsequent embryo yields. An important general 
remark before describing a few of the possibilities is the fact that long-term, repeated 
use of OPU in an individual donor cow is possible without any hormonal stimula-
tion (Pieterse et al. 1991). In the long term, the absence of hormonal stimulation 
offers many advantages because when using hormones to stimulate follicle growth, 
the blood flow to the ovaries increases enormously, rendering the cows useless for 
OPU for a few weeks after the initial puncture. Low or suboptimal follicular activity 
can be remedied in some potential donors, mostly by using FSH-LH combinations 
or equine chorionic gonadotrophin (eCG = PMSG, pregnant mare serum gonadotro-
phin). While these hormones have been widely used in ET programs, modifications 
in the dose and timing of treatments are necessary, because the final aim of stimula-
tion prior to OPU is to generate additional follicles rather than to initiate multiple 
ovulations. Pieterse et  al. (1988) achieved the highest oocyte recovery rates in 
PMSG-treated donors, which developed larger ovaries and had more follicles than 
non-stimulated animals. However, a later study (Pieterse et al. 1992) showed that 
while stimulation resulted in a larger number of aspirated follicles per cycle, it had 
the opposite effect on oocyte recovery rate (RR), which was lower in stimulated 
than non-stimulated donors. Positive effects of FSH on the number of follicles with 
a diameter >6 mm and the number of viable blastocysts have, however, also been 
reported (Looney et al. 1994; Goodhand et al. 2000). Unfortunately, the increase in 
the number of follicles, oocytes recovered and embryos produced is often inconsis-
tent and might depend on the cycle stage at which treatment is initiated (Paul et al. 
1995). Vos et al. (1994) were able to retrieve five times as many COCs 22 h after, 
compared to shortly before, the LH surge (in PMSG-treated donors). Stubbings and 
Walton (1995) found no differences in the mean number of follicles suitable for 
puncture between non-stimulated cows punctured twice a week and FSH-stimulated 
cows punctured only once. Subtle changes in FSH dose influenced the sizes, but not 
the number of follicles, which was mainly a factor of individual donor and OPU 
session variation (De Roover et al. 2005). Some authors have also used intravaginal 
progesterone-releasing devices (CIDR) in combination with FSH and LH to prepare 
oocyte donors, with varying results (Chaubal et al. 2007). It should be noted that 
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FSH (and probably also other hormonal) treatments might result in asynchrony 
between the maturation of the oocyte and its surrounding follicle (de Loos et al. 
1991) or between nuclear and cytoplasmic maturation (Bousquet et al. 1999), result-
ing in reduced developmental competence.

As can be expected, hormonal stimulation and OPU puncture frequency together 
can affect the final embryo yield. De Ruigh et al. (2000) concluded that FSH treat-
ment prior to OPU once every 2 weeks resulted in significantly more COCs and 
more embryos produced in  vitro (expressed per OPU session) than a twice-per- 
week non-stimulated OPU schedule. However, total embryo production over a 
2-week period turned out to be higher with the twice-weekly puncture scheme (four 
non-stimulated sessions in 2  weeks) than for one FSH-stimulated OPU session 
every 2 weeks. Goodhand et al. (1999) reported that the puncture of FSH-treated 
donors once a week produced a similar number of transferable embryos per ‘donor 
week’ as aspiration twice a week without FSH treatment. Chaubal et  al. (2006) 
reported that a protocol combining dominant follicle removal and FSH stimulation 
with a subsequent single OPU per week seemed to be the most productive and cost- 
effective approach over a 10-week period. When calculating total costs of the pro-
cedure, one needs to keep in mind the price of the hormonal treatment, and its 
administration, which often requires animal handling twice a day for several days.

10.5  OPU-IVP to Treat Bovine Infertility

Compared to ET, where cows can typically be flushed three to four times a year, 
yielding around five embryos per flush, OPU can be performed as often as twice a 
week. In healthy donor cows, two embryos per donor per week can be produced, 
equating to four to five times the average ET yield (Kruip et al. 1994). An important 
additional advantage of using OPU-IVP is greater flexibility in choice of sire-dam 
combinations in vitro, i.e. using different bulls on oocytes from the same OPU ses-
sion, which can accelerate the genetic selection process. In addition, OPU-IVP can 
be used to produce additional offspring from valuable cows that no longer respond 
to embryo flushing treatments. The first OPU-IVP calves in Belgium were born in 
1995, following oocyte retrieval from Belgian Blue donors with impaired fertility 
(Bols et al. 1996). Following the transfer of 56 IVP embryos, 12 viable pregnancies 
were obtained, leading to at least 1 extra calf for 7 out of 12 high genetic merit 
donors considered to have reached the end of their breeding career. Looney and co- 
workers (1994) reported OPU in 200 mostly beef cattle donors, of which 50% had 
a history of good embryo production. An average of 6.3 oocytes were retrieved per 
session, and 16.4% yielded a blastocyst. Transfer of 813 embryos resulted in 325 
pregnancies (40%). Hasler et al. (1995) carried out similar work on 155 infertile 
dairy cows. An average of 4.1 oocytes suitable for IVF were retrieved per session. 
Following transfer of 2268 fresh embryos, 1220 pregnancies (53.8%) were obtained. 
Large data sets like these illustrate that OPU-IVP has evolved to become a routine 
procedure to produce reliable numbers of embryos in vitro, albeit with a depen-
dency on the breed of cow and the efficacy of the IVP system (Bousquet et al. 1999). 
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When comparing embryo yields and pregnancy rates between in vivo (classical ET) 
and in vitro (OPU-IVP) methods using the same donors, the in vitro approach turned 
out to yield the most embryos (Pontes et al. 2009). Because the ultimate success rate 
of assisted reproduction is determined by the number of calves produced, a well- 
synchronized, healthy, recipient herd into which fresh embryos can be transferred is 
a major prerequisite for success. When fresh transfers cannot keep up with embryo 
production, reliable embryo cryopreservation methods need to be available, increas-
ing the complexity of the whole operation.

10.6  Donor Health and Repeated OPU

Reports on the impact of the OPU procedure on donor animal health and future 
reproductive performance are scarce. Pieterse et  al. (1991) could not detect any 
adhesions following OPU, and the procedure did not seem to affect the donor’s 
future fertility. Dairy heifers were closely monitored during two periods of 
4–5 weeks while enrolled in a twice-weekly OPU schedule (Petyim et al. 2000). 
They only occasionally showed signs of oestrus, and corpus luteum-like structures 
often developed from punctured follicles, which concurred with earlier findings 
that, based on progesterone profiles, repeated OPU appeared to induce a degree of 
acyclicity (Bols et al. 1998). At the end of their first OPU period, heifers returned to 
normal cyclicity (Petyim et al. 2000). Post-mortem findings following the second 
OPU period included a thickening of the ovarian tunica albuginea and a slight hard-
ening of the ovaries. The authors concluded that OPU did not have major negative 
effects on ovarian structure or on subsequent ovarian function. Additional research 
on the effects of OPU revealed a significant rise in FSH levels on the day following 
puncture (Petyim et  al. 2001). In addition, heart rate and cortisol concentrations 
increased significantly following restraint and epidural injection. However, both 
parameters returned to normal within 10  min after completion of the OPU 
procedure.

10.7  Transvaginal Ultrasound-Guided Oocyte Retrieval 
in the Mare

As with other assisted reproductive technologies, the development and uptake of 
OPU-IVP in commercial horse breeding has been slower and driven by different 
primary goals to those that apply to cattle breeding (Galli et al. 2007). While initial 
reports of transvaginal ultrasound-guided oocyte retrieval in mares (Brück et  al. 
1992) followed closely behind those in cattle, interest in the technique waned for a 
number of practical reasons. Most important were the disappointing rates of oocyte 
recovery from immature follicles (<25% in early studies: see Hinrichs 2012 for 
review) and the absence of commercially available gonadotrophins capable of stim-
ulating the development of multiple mature follicles from which to harvest in vivo- 
matured oocytes; taken together this meant that recovering enough high-quality 
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oocytes from living donors to run a viable IVP program appeared an insurmount-
able challenge. Since conventional in vitro fertilization using equine gametes also 
proved to be very poorly successful (Hinrichs 2012), commercial interest in equine 
IVP remained understandably low. However, interest in OPU was rekindled by the 
development of oocyte transfer (OT) as a tool to examine oocyte developmental 
competence (Carnevale and Ginther 1995) and to treat severe acquired infertility in 
mares (Carnevale 2004). Development of OPU was given further impetus by the 
first reports of intracytoplasmic sperm injection (ICSI) as a technique for success-
fully producing foals after fertilizing equine oocytes ex vivo (Cochran et al. 1998; 
McKinnon et al. 2000). Nevertheless, progress remained slow, largely because blas-
tocyst production rates following IVP were much lower (<10% compared to 
approximately 35%) than those obtained after transfer of sperm-injected oocytes 
into the oviduct of either synchronized recipient mares (Choi et  al. 2004) or 
progesterone- treated sheep (Tremoleda et al. 2003). The development of DMEM/
Hams F-12-based equine IVP systems capable of supporting blastocyst production 
rates >35%, at least within an experimental set-up (Choi et al. 2006), was the final 
breakthrough required for equine IVEP to become a viable clinical technique. 
Indeed, when Galli et al. (2014) reported producing 0.6 blastocysts per OPU in a 
commercial OPU-IVP program, it became clear that OPU-IVP could be competitive 
with commercial embryo transfer, given that embryo recovery rates of 0.3–0.5 per 
cycle are the norm in commercial sport horse mares inseminated with frozen-thawed 
or chilled-transported semen (Stout 2006). Most recently, reports of blastocyst pro-
duction rates of 15–20% per injected oocyte and > 1 per OPU (Hinrichs et al. 2014) 
even after overnight shipping of oocytes at 20 °C (Galli et al. 2016) have led to a 
surge in interest in equine OPU-IVP.

10.7.1  Clinical Applications of OPU in the Mare

OPU is the basis for two clinical procedures in horses, oocyte transfer (OT) and 
in vitro fertilization by intracytoplasmic sperm injection (ICSI) (Fig. 10.6). To date, 
the main reasons for wanting to use OPU in clinical equine practice has been sub-
fertility. Indeed, OT was developed primarily as a technique for treating subfertility 
in mares that were not, or only infrequently, able to produce embryos by conven-
tional AI and embryo flushing, due, for example, to repeated failure of normal ovu-
lation or severe pathology of the oviducts, uterus or cervix (Carnevale 2004). 
OPU-ICSI was similarly introduced initially as a treatment for subfertile mares; 
however, given its original development as a technique for addressing ‘male factor 
infertility’ in human infertility, ICSI also rapidly became an attractive option for 
addressing stallion subfertility and/or limited availability of semen. Finally, signifi-
cant improvements in in vitro blastocyst production rates and the realization that 
OPU-ICSI combined with blastocyst cryopreservation significantly improves the 
efficiency of recipient mare use have seen OPU-IVP emerge as a desirable method 
for producing embryos from actively competing sport horse mares (e.g. show jump-
ers and dressage horse) whose competitive peak overlaps with their most fertile 
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years (Galli et al. 2014). OPU-IVP has the additional advantage over conventional 
ET that it can be performed as a single outpatient procedure with minimum impact 
on the training or competition schedule and without the need for any hormonal 
manipulation of the oestrous cycle; many owners and riders do not like their mares 
being returned to oestrus since it can negatively affect performance in some mares.

10.8  Oocyte Retrieval from Living Donor Mares

The equipment required for, and procedures involved in, recovering oocytes from liv-
ing donor mares is essentially the same as those used in cattle, although some modifi-
cations are required to account for behavioural and anatomical differences between 
the species. The most important difference is the fact that immature equine COCs are 
surrounded by a cumulus investment with fewer cell layers that is attached more 
firmly to the follicle wall by a broader cumulus cell hillock with projections into an 
underlying thecal cell pad (Hawley et al. 1995). The practical consequence of this 
more tenacious attachment of the immature COC to the follicle wall is that simple 
aspiration of follicular fluid is not sufficient to reliably recover the oocyte. Instead 
repeated aspiration and flushing of the follicle accompanied by scraping of the follicle 
wall with the bevel of the aspiration needle is required to achieve a clinically accept-
able oocyte recovery rate (Galli et al. 2007). In general, a 60 cm 12 gauge (approx. 
2.75 mm outer diameter) double lumen needle is used for equine OPU. Aspiration is 
performed via the inner stylet which is connected, via a collecting vessel, to the vac-
uum pump; the vacuum pressure is adjusted to achieve fluid aspiration of roughly 
20–25 ml per minute, since higher pressures increase the risk of denuding the already 

50mm

Fig. 10.6 An in  vitro-matured MII horse oocyte immediately prior to intracytoplasmic sperm 
injection. The oocyte is immobilized with a holding pipette with the polar body orientated to 12 
o’clock, to minimize the risk of injecting the sperm into the metaphase plate. A sperm is positioned 
in the tip of a conventional injection needle. The high lipid content of the horse oocyte makes it 
difficult to visualize cytoplasmic structures
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relatively thin equine cumulus cell investment. Once the follicle has been evacuated, 
it is flushed repeatedly with commercial embryo flushing medium, supplemented with 
heparin (5–20 i.u. per ml) to prevent clotting of any blood or the gelatinous fluid com-
monly recovered from large or atretic follicles, and introduced via the outer needle. 
Using a double lumen needle significantly reduces the risk of an oocyte remaining in 
the needle’s dead space and being repeatedly flushed into and out of a follicle.

10.8.1  Aspirating Immature Follicles

For immature oocyte recovery, follicles from approximately 8–10 mm in diameter 
are flushed 6–12 times, where larger numbers of flushes are used when few follicles 
are available for aspiration, to maximize the likelihood of recovering the oocyte. The 
need to repeatedly flush follicles means that the OPU can be a prolonged procedure 
(15–45 min) in the mare; epidural anaesthesia using 2% lidocaine is therefore recom-
mended to prevent the mare straining in response to the presence of the ultrasound 
probe in the vagina and the manipulation of the ovaries via the rectum. In addition, 
fairly profound sedation with an alpha-2 agonist (e.g. detomidine hydrochloride) 
potentiated with an opioid analgesic such as butorphanol is recommended to ensure 
that the mare remains quiet throughout the procedure, while hyoscine- N-butylbromide 
can be used to further relax the rectum, thereby facilitating manipulation of the ova-
ries and reducing the risk of damaging the rectum wall. It is also advisable to admin-
ister a non-steroidal anti-inflammatory drug (NSAID) to combat pain during and 
immediately after the OPU procedure and perioperative antibiotics to cover the pos-
sibility of contaminants being introduced into the abdominal cavity during OPU. In 
our experience of >500 OPUs, the procedure is (surprisingly) well tolerated, even in 
young inexperienced mares, and post- procedure complications have been limited to 
mild pyrexia and/or abdominal discomfort of short duration (12–36 h) that responds 
well to NSAIDs. Others have reported occasional rectal bleeding associated either 
with needle puncture of the rectum wall or as a result of vigorous ovarian manipula-
tion and emphasize the ever-present risk of more serious damage such as a rectal tear 
or ovarian abscess (Velez et al. 2012); fortunately, the incidence of serious complica-
tions appears to be low, and even repeating OPU at 2-week intervals over a period of 
months appears to have little or no lasting effects on subsequent ovarian structure, 
cyclicity or fertility (Velez et al. 2012). Recent reports on oocyte recovery rates sug-
gest that, with an established team and system, average RRs from immature follicles 
of between 50 and 70% can be achieved (Jacobson et al. 2010; Galli et al. 2014, 
2016; Hinrichs et al. 2014), although recovery during individual OPU attempts can 
vary from as little as 20% and up to 100%.

10.8.2  Harvesting In Vivo-Matured Oocytes

The major alternative to harvesting immature oocytes is oocyte recovery from 
the pre-ovulatory follicle of a donor mare at a set time after hormonal induction 
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of ovulation; indeed, this is the protocol of choice for OT and is also used in 
some OPU- IVP programs both because oocyte recovery rates from pre-ovulatory 
follicles are high (>70%: Carnevale et al. 2005; Foss et al. 2013) and because 
oocytes that undergo in vivo maturation have higher developmental competence, 
with blastocyst formation rates as high as 40–70% reported albeit on small num-
bers of oocytes (Jacobson et al. 2010; Foss et al. 2013). OT also aims to utilize 
the anticipated high developmental competence of in vivo-matured oocytes as a 
treatment for subfertility of female origin and involves the surgical transfer of a 
mature (metaphase II) oocyte to the oviduct of an inseminated recipient mare that 
has had her own oocyte removed by aspiration of the pre-ovulatory follicle 
(Carnevale 2004). In either situation, oocyte recovery involves aspiration of the 
single (occasionally 2–3) pre- ovulatory follicle between 20 and 35 h after induc-
tion of ovulation using either a long-acting GnRH analogue (e.g. deslorelin ace-
tate), hCG (1500–2500 i.u.) or a combination of the two, in an oestrous mare 
with a follicle exceeding 35 mm in diameter (Carnevale 2004; Foss et al. 2013). 
Waiting until 35 h after ovulation induction has the advantage of ensuring that 
the oocyte has reached MII, i.e. is fully mature, and that the attachment of the 
COC to the underlying thecal pad has begun to loosen, thereby improving the 
likelihood of oocyte recovery. On the other hand, a small proportion of mares 
will ovulate before the 35-h time point and that cycle will therefore be lost. When 
recovery is performed at 20–24 h after ovulation induction, there is less risk of 
premature ovulation, but the oocyte will be at approximately the metaphase I 
stage of maturation and require a further 12–16 h of culture in vitro to complete 
maturation before transfer into the recipient’s oviduct (Carnevale 2004; Galli 
et al. 2014).

10.8.3  Technical and Biological Factors Influencing OPU Results

As in the cow, the success of OPU-IVP can be divided into two interrelated compo-
nents, oocyte recovery rate (RR) and blastocyst production rate, where the latter and 
the pregnancy and foaling rates following transfer of resulting embryos are ulti-
mately most relevant. Historically, RR from immature follicles was poor at around 
25% (for review see Hinrichs 2012). However, it is now clear that a RR of >50% can 
be achieved when aspirating and repeatedly flushing follicles ≥8–10 mm in diam-
eter (Galli et al. 2007; Jacobson et al. 2010; Galli et al. 2014). While this may not 
quite reach the RR of oocytes from pre-ovulatory follicles (>75%; Carnevale et al. 
2005), it is more than compensated by the larger number of oocytes and the fact that 
in vitro oocyte maturation rates of OPU-derived oocytes is high (>65%: Foss et al. 
2013; Galli et al. 2014). One critical technical factor is needle size, with the RR 
falling when smaller diameter needles are used, e.g. Velez et al. (2012) reported a 
RR of 38% for a 15 gauge double lumen as compared to 48% for a 12 gauge double 
lumen needle. While it is not entirely clear exactly why a larger needle is better, it 
presumably relates either to more rapid flow and greater turbulence during flushing 
or more effective scraping of the inside of the follicle.
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Currently, there is too little data to make firm conclusions about factors influenc-
ing the ultimate results of OPU-IVP; indeed, there is very little published data about 
pregnancy and foaling rates. Nevertheless, the recent upsurge in the use of OPU- 
IVP is beginning to yield some interesting data. For example, preliminary reports 
indicate that pregnancy rates exceeding 75% following transfer of fresh (Hinrichs 
et al. 2014) and exceeding 60% after transfer of cryopreserved (Galli et al. 2007, 
2016) OPU-IVP embryos are possible; on the other hand, early pregnancy loss rates 
appear to be higher than after conventional breeding, AI or ET (>20% versus 
5–10%). In addition, mare age, breed, timing of an OPU attempt and time of season 
all seem to affect aspects of the OPU-IVP process. For example, performing OPU 
at a fixed interval of 14 days results in a fall in the number of follicles available for 
puncture (7–9 yielding 3.5–4.5 oocytes; Jacobson et  al. 2010; Velez et  al. 2012) 
compared to monitoring mares and delaying the subsequent OPU until follicle num-
bers have increased. Using the latter approach, Galli et al. (2014) reported aspirating 
14–17 follicles during repeated OPU attempts, yielding 9–12 oocytes per OPU. In 
the clinical program at Utrecht University, the policy is to advise owners to wait 
until a mare has at least 15 follicles >10 mm, while accepting that some mares will 
never develop more than 6–10 follicles and need to be aspirated at this point; this 
policy has resulted in means of 23.5 follicles yielding 12.8 oocytes during 252 com-
mercial OPUs (Claes et al. 2016). With respect to time of season, the autumn and 
spring transitional periods appear to be optimal for the collection of immature 
oocytes because mares develop more mid-sized follicles than during the breeding 
season (e.g., 11.5 versus 6 follicles exceeding 12 mm; Donadeu and Pedersen 2008). 
Mare age also significantly affects follicle number with mares older than 20 years 
having significantly fewer follicles during the transitional period than 17–19-year- 
old mares, which in turn had fewer follicles than 3- to 7-year-olds (Carnevale et al. 
1997). These two observations explain why oocyte recovery in a commercial OPU 
program decreased with increasing mare age and was higher during spring and 
autumn than in the summer (Claes et al. 2016).

Equine blastocyst production by ICSI is currently a highly operator-dependent 
process, and, to date, only a handful of laboratories worldwide have been able to 
generate commercially acceptable embryo production rates (Hinrichs 2012) Even 
so, it is becoming apparent that there are breed effects on blastocyst production rates 
with Galli et  al. (2014) reporting embryo production rates of 0.84 (11.3%), 0.6 
(10%) and 0.29 (4.1%) per OPU (per injected oocyte) for Warmblood, Quarterhorse 
and Arab mares, respectively. In addition, Claes et al. (2016) recently reported sig-
nificant effects of antral follicle count (follicles >4 mm at the time of OPU) and 
donor mare reproductive history on blastocyst production, with fewer blastocysts 
resulting from mares with lower follicle numbers and with a history of subfertility/
fertility using other techniques, irrespective of mare age (Fig. 10.7).

Since OT is a more established technique than OPU-IVP, more information is 
available about factors affecting pregnancy rates following OT than for OPU- 
IVP. While operator experience also clearly plays an important role in results, the 
other principle factor influencing success is age of the donor mare. Indeed, in an 
experimental setting, OT of oocytes from young mares yielded a 92% pregnancy 
rate compared to 31% for aged mares (Carnevale and Ginther 1995). Similarly, in a 
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commercial setting, day 15 pregnancy rates averaged 50% for mares <15 years old 
compared to only 16% for mares >23 years (Carnevale et al. 2005). As for OPU- 
IVP, pregnancy loss rates in a clinical OT program exceed 20%, presumably reflect-
ing the bias in the donor mare population to aged mares with reduced intrinsic 
oocyte developmental competence (Hinrichs 2012) (Fig. 10.8).

Fig. 10.7 Developing horse embryos 8 days after ICSI. The embryo in the bottom right has devel-
oped to the blastocyst stage as evidence by expansion, thinning of the zona pellucida (ZP) and 
development of a palisading trophoblast layer. In vitro-produced embryos do not produce a conflu-
ent blastocyst capsule, which explains the absence of a capsular layer between the trophectoderm 
and the ZP. The other embryos all underwent cleavage and early cell divisions but are now in vari-
ous stages of degeneration. It can be challenging to definitively differentiate between blastocysts 
and degenerate embryos/oocytes

Fig. 10.8 An in vitro-pro-
duced horse blastocyst 
stained with Hoechst 33,342 
(Blue) to visualize the nuclei 
and phalloidin to demonstrate 
the actin cytoskeleton. 
Because it takes practice to 
reliably differentiate viable 
IVP horse blastocysts from 
degenerating embryos, 
staining to demonstrate the 
presence of numerous cells 
and formation of a tropho-
blast layer can be essential to 
the establishment of an 
equine IVP program
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 Conclusion
OPU is now a routine, widely performed procedure in both commercial cattle 
practice and research into the developmental competence of bovine oocytes. In a 
commercial setting, the technique offers greater flexibility, in terms of bull use, 
and is capable of generating more embryos per unit time than conventional mul-
tiple ovulation and embryo transfer protocols. In horses, OPU was first intro-
duced into the clinic as a vital component of oocyte transfer, where success is 
limited by the bias towards aged subfertile mares as donors; nevertheless, OT has 
allowed production of foals from mares that would otherwise have been consid-
ered infertile. Equine OPU-IVP has only very recently become a commercially 
viable proposition, as a result of significant improvements in immature oocyte 
recovery and in vitro blastocyst production; nevertheless, OPU-IVP is already 
proving to be very competitive with AI-ET in terms of numbers of embryos gen-
erated per unit time, can be used in cases of both male and female (acquired) 
infertility and is attracting increasing interest from the owners of competing 
mares because of its flexibility, availability as an outpatient treatment and lack of 
any requirement for hormonal manipulation of the oestrous cycle.
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11Preservation of Gametes and Embryos

Amir Arav and Joseph Saragusty

Abstract

Cryopreservation is the practical implementation of the scientific field of 
 cryobiology. It was developed particularly over the last two centuries, having 
major milestones in the field of animal reproduction. Technologies such as direc-
tional freezing of sperm and sperm desiccation, as well as oocyte and embryo 
freezing and vitrification, are discussed and described in this chapter. Hereinafter, 
we describe the major breakthroughs of the past two centuries and our foresight 
for the near future.

11.1  History of Cryopreservation

Cryopreservation refers to preservation of biological samples, such as proteins, 
cells, tissues, organs and even whole animals, at low temperatures. Currently its 
most popular meaning is the preservation of such cells and tissues at very low sub- 
zero temperatures.

In the late nineteenth century, researchers such as Ferdinand Cohn (1871), 
Hermann Kunisch (1880) or Hermann Müller-Thurgau (1886) made observations of 
plant tissue while freezing it by taking the microscope, specimens and themselves 
out during cold winter days. It was, however, Hans Molisch who developed the first 
cryomicroscope in 1897 (Molisch 1982). Molisch, then in Austria, packaged the 
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microscope into a box with ice and other coolants, allowing limited control from 
outside the box (illustrated photo in Fig. 11.1). He observed that plant cells are dam-
aged due to the growth of ice crystals. He stated that “…the direct observation of the 
freezing cell is the best means of obtaining information on the causes of death by 
freezing” (Molisch 1982).

11.1.1  Cryopreservation: The Beginning

The nineteenth century was the century at which modern science became profes-
sionalised and institutionalised with many breakthroughs in modern scientific fields 
such as chemistry, physics, biology (evolution) and the scientific methodology. One 
of the great scientists of that time was Joseph Louis Gay-Lussac; one of his discov-
eries was the effect of small volume of water droplets on supercooling. B. J. Luyet 
and P.M Gehenio wrote in their 1940 book titled Life and Death at Low Temperatures 
about the observation of Gay-Lussac that “Some of the oldest investigations on 
subcooling were made by Gay Lussac (1836) who observed that water can be sub-
cooled to −12 °C when it is enclosed in small tubes” (Luyet and Gehenio 1940).

Fig. 11.1 An illustration 
of the first cryomicroscope 
(Photo: A. Arav)

A. Arav and J. Saragusty



237

In 1858 Johann Rudolf Albert Mousson sprayed droplets of water, less than 
0.5 mm in diameter, on a dry surface and observed that the smaller the drops, the 
longer they stayed subcooled (Mousson 1858). Not only the volume was important 
to achieve supercooling but also the cooling velocity and the concentration of the 
supercooled or supersaturated solutions, among other factors that might have an 
influence on inducing crystallisation as was mentioned by Luyet and Gehenio 
(Luyet and Gehenio 1940). They wrote “To avoid freezing, the temperature should 
drop at a rate of some hundred degrees per second, within the objects themselves” 
and also “The only method of vitrifying a substance is to take it in the liquid or gas 
state and cool it rapidly so as to skip over the zone of crystallization temperatures in 
less time than is necessary for the material to freeze. … It is evident that when the 
crystals grow faster one must traverse the crystallization zone more rapidly if one 
wants to avoid crystallization” (Luyet and Gehenio 1940). These early experiments 
on supercooling were the basis for vitrification. In 1938 Luyet and Hodapp pub-
lished the first report on successful cryopreservation of spermatozoa, done by vitri-
fication (Luyet and Hodapp 1938). A decade later, in 1949, Christopher Polge, 
Audrey Smith and Alan Parkes (Polge et al. 1949), when trying to duplicate Luyet’s 
and Hodapp’s results with fowl spermatozoa, accidently discovered the cryoprotec-
tive property of glycerol and so opened the field of slow freezing.

Still today, the two methods for gametes’ cryopreservation are slow freezing and 
vitrification. Slow freezing has the advantage of using low concentrations of cryo-
protectants (CPs), which are associated with chemical toxicity and osmotic shock. 
Vitrification, on the other hand, is a very rapid method that causes the sample to turn 
into a glassy amorphous state instead of creating ice crystals. It has the benefit of 
reducing injuries caused to the cells by chilling and crystallisation. Sherman and 
Lin (Sherman and Lin 1958) showed that mouse oocytes need 8–10 min for equili-
bration in a freezing solution containing 5% glycerol at 37 °C. Such oocytes sur-
vived freezing to −10 °C and maintenance at that temperature for 3.5 h. In addition, 
they demonstrated that mouse oocytes survive supercooling to −20 °C after slow 
cooling at 0.6 °C/min; however, oocytes that were cooled faster or to lower tempera-
tures were damaged due to intracellular crystallisation.

In the early 1970s, two groups were competing on achieving the first success of 
slow freezing of embryos. One group included Whittingham, Leibo and Mazur and 
the other Wilmut and Polge. Whittingham had reported partial success in freezing 
embryos to −79  °C for 30 min using polyvinylpyrrolidone (PVP) (Whittingham 
1971); however, this experiment could not be duplicated, but instead both groups 
published in 1972 their reports, showing the first survival of mouse embryos after 
slow freezing (Whittingham et  al. 1972; Wilmut 1972) and live offspring 
(Whittingham et al. 1972). The technique included cooling at a slow rate in the pres-
ence of 1  mol/L DMSO, which most likely was the ingredient that enabled this 
success. In 1976, sheep embryos were slow frozen by Willadsen using 1.5 mol/L 
DMSO and a cooling rate of 0.3 °C/min (Willadsen et al. 1976). However, the first 
farm animal to be born after transfer of frozen/thawed embryos was a calf. This was 
published by Wilmut and Rowson in 1973 (Wilmut and Rowson 1973). Since then, 
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dozens of species have been successfully cryopreserved by slow freezing (for a 
review, see (Saragusty and Arav 2011)).

11.2  Vitrification of Oocytes and Embryos

For many years, slow freezing, and not vitrification, was the method of choice for 
embryo cryopreservation. In 1985, the first successful vitrification of mouse 
embryos, using a relatively large volume sample, was achieved (Rall and Fahy 
1985). Rall and Fahy vitrified mouse embryos with a mixture of DMSO, acetamide, 
and polyethylene glycol and in a relatively large volume inside a 0.25-mL straw that 
was plunged into liquid nitrogen (LN). As stated above, vitrification is the process 
in which a sample solidifies without the formation of ice crystals, thus resulting in 
a glassy amorphous state. The main factors that influence the probability for vitrifi-
cation to occur are (1) sample’s volume, the lower the volume, the greater the 
chances for vitrification to occur; (2) cooling rate, as cooling rate increases, the 
chances for ice nuclei to form or to grow into ice crystals decrease;. and (3) sample’s 
viscosity, the higher the viscosity of the sample, the higher the chances to avoid 
crystallisation [see Arav equation].

 
Probability of vitrification

Cooling warming rate Viscosity

Vo
=

×/

llume  

In 1989 the “minimum drop size” method (MDS) was developed by A. Arav 
(Arav 1989; Arav 1992). The volume used for vitrification was in the range of 
0.07 μL (70 nL), and the concentration of the vitrification solution (VS) was about 
50% lower than of the VS used for large-volume vitrification. The method was 
named “minimum drop size” because this was the minimal size that maintained 
oocytes or embryos without damage owing to desiccation. Vitrification of oocytes, 
on the other hand, although initially attempted in the late 1980s, had not been 
applied clinically until recently. Vitrification is currently producing very satisfac-
tory outcomes by means of methodologies that use a minimal volume (Cobo et al. 
2008; Kuwayama 2007; Vajta et al. 1998). Despite very favourable results, success 
in vitrification varies between laboratories and individuals, partially because the 
transfer of oocytes or embryos between solutions requires much experience. This 
operator dependency is a source of inconsistency. Currently, there is no methodol-
ogy that is compatible with full automation of the vitrification process. Here we 
report a method that, by virtue of a fully automated, operator-independent process, 
including the immersion into LN, will simplify and standardise the vitrification pro-
cedures worldwide. For this purpose we have developed a fully automated vitrifica-
tion device (Sarah, FertileSafe, Ness Ziona, Israel; Figs. 11.2 and 11.3). Using this 
device, we vitrified mouse oocytes and embryos at the blastocyst stage. Results 
showed that 95% (19/20) of the MII oocytes regained isotonic volumes, and all 
(100%) of the surviving oocytes were viable according to the live/dead stains (Arav 
et al. 2016). Rewarmed embryos had 95% (38/40) blastulation rate (day 4) and 75% 
(30/40) hatching rate (day 5). The fresh embryos (controls) had a similar (two-tailed 
Z-test, Z = 0.4317, P = 0.67) hatching rate of 80% (16/20).
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Fig. 11.2 Sarah automatic 
vitrification and warming 
device
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Fig. 11.3 A typical cooling and warming curve when vitrifying in the Sarah automatic vitrification 
and warming device, using the E.Vit (fertileSafe, Ness Ziona, Israel) vitrification straws that were 
specially designed to allow fast transfer of the oocytes or embryos between solutions and high cool-
ing and warming rates. Here the sample was cooled from room temperature to −181 °C then gradu-
ally warmed up to −123 °C and then warmed at very high warming rate up to about 31 °C
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11.2.1  Safe Vitrification Cooling and Storage

Cryopreservation of biological samples by direct exposure to liquid nitrogen (LN) and 
their storage in standard LN tanks is problematic due to the risk posed by potential con-
tamination with viruses, bacteria, fungi and spores that may survive in LN (Bielanski 
et al. 2003; Bielanski 2012; Vajta et al. 2015). The risk of contamination might be due to 
contaminants already residing in the LN when supplied to the laboratory or, alterna-
tively, due to cross-contamination between samples where the LN acts as transmitting 
medium. This risk of microbial infection becomes a particularly serious threat when the 
biological samples are intended to be transferred into recipients, as is done in IVF pro-
cedures, ovarian cortex transplantation and future stem cell therapies. Therefore, the use 
of safe cryopreservation protocols is important and highly desired. At present, heat-
sealing is considered the best and safest method for firm closure of storage carriers. 
Other methods such as cotton plugs, beads and PVP powder (commonly used for 
sperm), waterproof mechanical closures such as screwed caps of cryovials or protective 
caps of several vitrification devices do not provide appropriate protection. The drawback 
of these sealing methods, particularly of heat-sealing, is that they slow the cooling rate 
and increase sample volume, thus reducing the chances for successful vitrification.

To overcome these potential risks of contamination posed by both closed and 
open systems, we developed two devices. The first is a bench-top device that pro-
duces clean liquid air from air filtered through 0.22-μm filter (CLAir, FertileSafe, 
Ness Ziona, Israel). Liquid air (LA) has the same temperature and properties as 
LN. The second is a sterile storage device, which enables storing samples in a sterile 
manner in standard LN tanks. This device preserves the sample at LN temperature 
while insulating it from being in contact with the surrounding LN (Esther, 
FertileSafe, Ness Ziona, Israel).

Example of Vitrification Protocol for Bovine Blastocysts
For Cooling
 1. Vial 1 is filled with 2 mL of 25% of equilibration solution (ES), which is 

7.5% ethylene glycol or EG, 7.5% DMSO and 10% foetal calf serum or 
FCS in PBS (i.e. 1.875% EG, 1.875% DMSO, 10% FCS in PBS).

 2. Vial 2 is filled with 2 mL of 50% ES (i.e. 3.75% EG, 3.75% DMSO and 
10% FCS in PBS).

 3. Vial 3 is filled with 2 mL of 100% ES.
 4. Vial 4 is filled with 2  mL of 100% vitrification solution or VS (16% 

EG + 16% DMSO + 0.5 M sucrose + 10% FCS in PBS).
 5. Vials are placed into their respective slots on the automatic vitrification 

and warming device (Sarah, FertileSafe Ltd., Ness Ziona, Israel).
 6. Embryos are loaded into 0.25-mL straws with holding medium (i.e. 

PBS + 10% FCS).
 7. Straws are loaded into their holders and the start button is pressed.
 8. At the end of the process, the straws with the vitrified embryos are trans-

ferred into liquid nitrogen for storage.
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11.3  Directional Freezing

Sperm cryopreservation has been attempted already in the eighteenth century 
(Spallanzani 1776) and, to some extent, practised during the first half of the twenti-
eth century (Luyet and Hodapp 1938; Phillips and Lardy 1940). The science of 
cryopreservation, however, really started with the seminal work of Father Basile 
J. Luyet (Luyet 1937; Luyet and Hodapp 1938) who realised that ice formation can 
cause damage to the cryopreserved cells and should therefore be avoided. In the 
absence of thickeners and other cryoprotective agents, the only way to achieve that 
was by kinetic vitrification, i.e. vitrification of very small volumes at very high cool-
ing rates. In the decade that followed, several attempts were made to cryopreserve 
spermatozoa with varying rates of success (Hoagland and Pincus 1942; Jahnel 
1938; Schaffner 1942). The era of sperm freezing was launched when Polge and 
colleagues discovered the cryoprotective properties of glycerol in 1949 (Polge et al. 
1949), a discovery that was made in parallel also in Russia by I. V. Smirnov (cited 
in Katkov et al. 2012). The developments in sperm cryopreservation that followed 
are described elsewhere in this book (see Waberski, Chapter 4). We wish to concen-
trate here on one specific development, the directional freezing technique.

The idea of directional freezing may have arisen from the casting industry. 
Casting proceeds in such a way that molten feed metal coming through the sprue is 
continuously available for the solid-liquid boundary. The metal shrinks when it 
cools and solidifies, and, in the absence of continuous feed metal, defects will form 
in it. This process is known as directional solidification. When water solidifies, it 
expands rather than shrinks so the physical forces acting on the sample when con-
fined to the boundaries of its container are different (Saragusty et  al. 2009c). It 
turned out, however, that by guiding the freezing process in a unidirectional manner, 
it is possible to control many aspects of the freezing process so one could study it. 
The first steps of directional freezing were therefore on the stage of the microscope 
when Körber (Körber et al. 1983), Rubinsky and Ikeda (Rubinsky and Ikeda 1985) 
and others constructed their directional cryomicroscopes in the early 1980s 
(Figs. 11.4 and 11.5). Subsequently, work with the directional freezing technology 
pursued two parallel, and mutually complementing, lines of investigation. On the 

For Warming
 1. Vial 1 is filled with 2 mL of 1.0 M sucrose + 10% FCS in PBS.
 2. Vial 2 is filled with 2 mL of 0.5 M sucrose + 10% FCS in PBS.
 3. Vial 3 is filled with 2 mL of 0.25 M sucrose + 10% FCS in PBS.
 4. Vial 4 is filled with holding medium (i.e. PBS + 10% FCS).
 5. Vials are placed in their respective slots on the Sarah.
 6. Vitrified straws are loaded and the start button is pushed.
 7. At the end of warming, the tip of the straw is cut (leaving the cotton wool 

end intact), and the straw with the embryos is ready for transfer into the 
cow’s uterus (there is no need for a microscope for the warming process).
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one hand, research continued using this technology to advance our basic under-
standing of processes occurring during cryopreservation. On the other hand, and 
especially since a freezing device relying on this technology has been developed 
(Arav 1999), researchers utilised this technology for applied cryobiological studies. 
With this device, heat is removed from the samples to the surrounding highly ther-
mal conductive cold metal block as well as to the unfrozen part of the sample that is 
still in the warm block. At the same time, the controlled movement of the sample 
from the warm to the cold blocks at a constant velocity ensures ideal morphology of 
the ice crystals and their growth in a direction opposite to the direction of move-
ment. These characteristics help in achieving better protection of the cells or tissues 
in the sample throughout the freezing process.

Behaviour of the ice front and its effect on survival of cells in the solution were 
studied by Brower and colleagues (Brower et al. 1981) showing that cells can sur-
vive if they are pushed ahead of the ice front during initial freezing to allow some 
dehydration and equilibration and are then engulfed by the advancing ice front. This 
was followed by studies on the behaviour of binary water-salt solutions during 
directional freezing with the aim of better understanding what are the stresses expe-
rienced by the cells at the ice front. Körber and colleagues showed that the concen-
tration of the solution ahead of the advancing ice front was changing in agreement 
with phase diagrams and theoretical predictions (Körber et  al. 1983; Körber and 
Scheiwe 1983), a topic that was also studied at the time by Rubinsky (Rubinsky 
1983). These authors showed that with time or velocity, the concentration of solutes 
in the unfrozen media increased and demonstrated the advantage of the directional 

Microscope
lens

Cold
block

Warm
block

Liquid Direction of
movement

TL

TH
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d

Ice

Fig. 11.4 Schematic diagram of the directional freezing technology as demonstrated here on a 
microscope stage. The apparatus is composed of a warm (suprazero temperature, e.g., +5 °C; TH) 
and a cold (very low temperature, e.g., −50 °C; TL) blocks and a pushing mechanism that pushes 
the sample (mounted glass slide, glass tube, etc.) at a constant rate from the warm block to the cold 
block. Ice crystals will grow in a direction opposite to the direction of movement of the sample. 
The cooling rate (B) is a function of the temperature gradient between the blocks (G) and the 
velocity (v). The gradient (G) is associated with the temperature difference between the warm (TH) 
and cold (TL) blocks and the distance (d) between them. The microscope may be inverted, as illus-
trated here, or upright
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freezing microscope as a cryobiological investigation tool. The microscope made it 
possible to visualise the morphology of the advancing ice and, in cases of cells sus-
pensions, the interaction between the cells and the ice front. It was also possible to 
perform densitometric measurements while being able to control single parameters 
such as the velocity or the temperature gradient through which the sample is propa-
gated. It was then shown that particles in the solution may be repulsed by the ice 
front or engulfed by it, depending on the velocity in which the ice front advances 
and the size of the particles (Körber et al. 1985) and in case of gas bubbles also the 
saturation level of the solution (Lipp et al. 1987). These studies were thoroughly 
reviewed by Körber (Körber 1988). In later studies, during the 1990s, the applicabil-
ity of the general cooling rate eq. B = G × v to the directional freezing was demon-
strated (Beckmann et  al. 1990). In this eq. B is the cooling rate (change in 
temperatures divided by change in time or ΔT/Δt), G is the temperature gradient 
(change in temperature divided by the distance or ΔT/d) and v is the velocity 
 (distance divided by the change in time or d/Δt). The whole topic of cryoinjury was 
then studied, using directional freezing apparatuses. Hubel and colleagues demon-
strated the association between cooling rate and ice-cell association as a source of 

Fig. 11.5 The directional freezing machine. (a) The cassette into which up to five HollowTubes 
are loaded. The cassette acts as the warm block and goes into its slot under the right green cover 
on the machine. (b) Holder for a pushing rod. Five holders keep the five rods in place. (c) The 
engine, seen on the right side of the machine, moves five such pushing rods at a constant velocity. 
The rods push the HollowTubes from the warm block into and through the cold block and then out 
at the other end into the collection chamber, which is under the green cover on the left. The figure 
was reproduced from Methods in Cryopreservation and Freeze-Drying, Directional Freezing for 
Large Volume Cryopreservation, 2015, Vol. 1257, pp. 381–397, Saragusty J with permission of 
Springer (Saragusty 2015)
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injury (Hubel et al. 1992). Later studies by the same group demonstrated that addi-
tion of small amount of trehalose (10 mM) was sufficient to alter this ice-cell inter-
action and push up the velocity at which cells are trapped by the advancing ice and 
thus damaged (Hubel et al. 2007). Other agents, such as PBS, glycerol or OptiPrep 
(60% iodixanol), were all shown to affect ice crystal morphology during directional 
freezing (Saragusty et al. 2009a, b), thus affecting the way the cells interact with the 
advancing ice front and, consequently, the level of cryoinjury. The effects of other 
physical forces, including mechanical pressure and cell concentration, were also 
shown to be involved in cryoinjury (Saragusty et al. 2009c).

In the early 1980s, cryobiologists started working with ice crystal growth inhibi-
tors and freezing temperature depressors known as antifreeze glycoproteins (AFP). 
These proteins are found in various insects (Duman 1982), fishes (Knight et  al. 
1984) and plants (Griffith et al. 1992) but can also be produced synthetically (Bar 
et al. 2006; Matsumoto et al. 2006). At first, directional freezing studies showed the 
positive effects of these proteins on various biological systems including oocytes 
and embryos (Arav et al. 1993; Arav et al. 1994; Rubinsky et al. 1991; Rubinsky 
et al. 1992). The effect of these proteins on ice crystal morphology and the kinetic 
supercooling at the ice-solution interface were also studied (Furukawa et al. 2005) 
and recently reviewed (Bar Dolev et al. 2016). In parallel, other studies, using the 
same directional freezing technology, showed that the addition of AFP could also 
lead to cell injury due to intracellular ice formation (Ishiguro and Rubinsky 1994; 
Koushafar and Rubinsky 1997). In the following years, the directional freezing 
technology was also utilised to study the relationship between the cooling rate and 
the 3D ice crystal morphology and their interaction with the suspended cells, using 
confocal laser scanning microscope (Ishiguro and Koike 1998). More studies on 
cryoinjury (Arav et al. 2002; Li et al. 2010; Li et al. 2013) demonstrating how inter-
actions between the cells and extracellular ice crystals could lead to intracellular ice 
formation in a directional manner.

Directional freezing has been used successfully to cryopreserve a variety of cell 
and tissue types, including oocytes and embryos (Arav 1989; Rubinsky et al. 1991), 
whole ovaries (Arav 2003; Arav et al. 2005; Arav et al. 2007; Gavish et al. 2004a, b; 
Maffei et al. 2013b; Maffei et al. 2013a; Revel et al. 2001; Revel et al. 2004) and 
ovarian tissue (Maffei et al. 2013a), whole livers (Gavish et al. 2008) and hearts 
(Elami et al. 2008), cartilage tissue (Arav 2012) and a variety of cells, including 
granulosa cells (Loi et  al. 2008), umbilical cord mononuclear cells (Natan et  al. 
2009), red blood cells (Arav and Natan 2011; Arav and Natan 2012) and more. 
However, cryopreservation of spermatozoa is by far the most widespread applica-
tion of the directional freezing technology (Table 11.1).

Since their conception, the directional freezing machines went through many 
changes. Some models were designed to freeze straws, but the majority of the 
machines in use these days freeze in larger-volume HollowTube®. In the early days, 
freezing was done in normal glass tubes of 12 mL. Some experiments were even 
performed with 50-mL glass tubes, but this was dropped after a while. Early models 
were also capable of rotating the tubes with the samples while pushing them for-
ward. The assumption was that if not rotated, the sperm in the sample will sink to 
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Table 11.1 Sperm cryopreservation by the directional freezing technology

Species Study’s findings Reference
African elephant First successful AI with frozen-thawed semen in 

elephants
Hildebrandt 
et al. (2012)

African elephant DF as a successful method for cryopreservation in this 
species

Hermes et al. 
(2013)

Asian elephant DF as a successful method for cryopreservation in this 
species

Hermes et al. 
(2003)

Asian elephant Report on a successful protocol for freezing sperm in 
this species

Saragusty et al. 
(2009a)

Asian elephant Sperm stored up to 12 h post DF and thawing 
maintain acceptable in vitro values

(O'Brien et al. 
2012)

Bottlenose dolphin Directional freezing superior to straw freezing. AI 
with frozen-thawed sorted sperm produced an 
offspring

O'Brien and 
Robeck (2006)

Bottlenose dolphin Double freezing with sorting can be done with DF 
being better than straw freezing

Montano et al. 
(2012)

Bottlenose dolphin Mid-horn AI with sexed spermatozoa frozen by DF 
result in good conception rate

Robeck et al. 
(2013)

Beluga Trehalose is better than glycerol and DF is superior to 
straw freezing

O'Brien and 
Robeck (2010)

Beluga First successful AI with offspring with frozen-thawed 
sperm in this species

Robeck et al. 
(2010)

Cattle Similar pregnancy rate following single freezing in 
straw and double freezing by DF

Arav et al. 
(2002)

Cattle Better membrane and acrosome integrity in DF 
compared to freezing in straws

Hayakawa et al. 
(2007)

Cattle Iodixanol as a protective agent during DF Saragusty et al. 
(2009d)

Cattle Large-scale field study on double freezing: DF then 
straw vs. only straw with similar conception rates

Saragusty et al. 
(2009b)

Cattle Demonstration that the controlled ice nucleation stage 
is not needed during DF

Saragusty et al. 
(2016)

Common 
hippopotamus

Post-castration epididymal sperm freezing with clear 
differences between males

Saragusty et al. 
(2010)

Donkey DF superior to straw freezing in all parameters 
evaluated and with high conception rate when used 
for AI at the correct timing

Saragusty et al. 
(2017)

European brown 
hare

High fertility rates in captive hares following AI with 
frozen-thawed wild hare sperm

Hildebrandt 
et al. (2009)

Dorcas and 
mountain gazelles

Roadkill epididymal sperm rescue. Successful 
freezing with between-male differences

Saragusty et al. 
(2006)

Goat Acceptable post-thaw and pregnancy rates Gacitua and 
Arav (2005)

Horse Slower freezing rate and larger temperature gradient 
provide better post-thaw values

Sieme et al. 
(2001)

Horse DF superior to pellet freezing Rubei et al. 
(2004)

(continued)
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the bottom where they might get damaged once in contact with the cold block of the 
machine. This was later abandoned when experiments showed that freezing without 
the rotation worked well. The glass tubes were also replaced by the HollowTubes® 
which are basically two tubes of different diameters that are placed one inside the 
other and fused together at the bottom. The sample is placed in the space between 
these tubes. When using these tubes, cooling is done both through the inner tube by 
convection and through the outer wall by convection and conduction. These tubes 
come in several sizes, ranging from 2 to 8 mL. This brings us to one of the main 
advantages of the directional freezing technology for sperm cryopreservation, 
namely, the ability to cryopreserve large volumes. Economically, freezing in large 
volume is of great advantage to any breeding program that relies on progeny testing. 
For example, in the dairy cattle industry, semen is collected in large quantities over 
a long time period from a large number of bulls, but in the end semen from only 

Table 11.1 (continued)

Species Study’s findings Reference
Horse No difference in post-thaw in vitro parameters 

between DF and straw freezing
Zirkler et al. 
(2005)

Horse DF superior to straw freezing Gacitua et al. 
(2006)

Horse DF better than straw freezing in all parameters 
evaluated

Saragusty et al. 
(2007)

Human DF results in quality similar to commercial standard 
freezing equipment

Gao et al. (2002)

Killer whale Lower glycerol concentration and slower cooling rates 
better for straw freezing. DF superior to straw 
freezing in all evaluations

Robeck et al. 
(2011)

King penguin Chilled preservation at 5 °C better than 21 °C. DF 
better than straw freezing in membrane integrity

O'Brien and 
Robeck (2014)

Onager Optimal results for epididymal sperm obtained when 
testicles shipped at 4 °C, frozen by DF and 
maintained at 22 °C post-thaw

Prieto Pablos 
et al. (2015)

Yunan Diannan 
miniature pig

60-s induced ice nucleation and 1.5-mm/s velocity 
resulted in best post-thaw parameters and acceptable 
fertilisation rate

Zheng et al. 
(2010)

Rabbit Double freezing result in acceptable fertility and 
kindling rates

Si et al. (2006)

Rhesus macaque DF superior to straw freezing, with high in vitro 
fertilisation and blastocyst rates

Si et al. (2010)

Rhinoceros SMI highest in DF when frozen with K+/EDTA- 
supplemented extender

Reid et al. 
(2006)

Rhinoceros DF superior to straw freezing in various in vitro 
evaluations and in maintaining sperm head volume

Reid et al. 
(2009)

Rhinoceros First successful AI with frozen-thawed semen in 
rhinoceroses

Hermes et al. 
(2009)

Sheep Successful cryopreservation with DF Arav et al. 
(2000)

DF directional freezing, AI artificial insemination
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about 10% of the bulls is used in the breeding program, while everything else is 
discarded as unsuitable. If one calculates the costs involved in freezing and discard-
ing such a huge number of straws, it is clear that freezing in large and reusable glass 
tubes can save enormously large amount of money. The glass tubes also seem to 
occupy smaller space in the LN storage tanks (one 8-mL tube occupies less space 
compared to 32 straws of 0.25 mL), saving storage space and LN costs. It was based 
on such calculations that we proposed the double freezing solution (Arav et  al. 
2002; Saragusty et al. 2009b). Based on this concept, bovine semen can be cryopre-
served from a large number of bulls in 8-mL tubes till the progeny tests are com-
pleted. The tubes from those bulls that will not be used can be thawed, the contents 
discarded and the tubes cleaned, sterilised and reused. Tubes with semen from bulls 
that are to be used in the breeding program can be thawed, repackaged in 0.25-mL 
straws (insemination doses) and refrozen to be ready for use. The idea of double 
freezing can also be utilised in conjunction with sperm sex sorting. Samples can be 
frozen in large volumes, shipped to the sorting centre where they are thawed, sorted 
and then refrozen in insemination doses to be shipped to where they are to be used.

A second notable advantage of the directional freezing technology is the fact that 
in experiments spanning a large number of species, the directional freezing proved 
to be superior to conventional freezing in straws. These studies include, for exam-
ple, rhinoceroses (Reid et  al. 2009), bottlenose dolphins (O'Brien and Robeck 
2006), beluga (O'Brien and Robeck 2010), king penguin (O'Brien and Robeck 
2014), onager (Prieto Pablos et al. 2015), killer whale (Robeck et al. 2011), horse 
(Gacitua et al. 2006; Rubei et al. 2004; Saragusty et al. 2007), rhesus macaque (Si 
et al. 2010), cattle (Hayakawa et al. 2007) and donkey (Saragusty et al. 2017). This 
superiority also explains why Cogent, probably the world’s largest cattle sperm sex 
sorting company, elected to use this technology to preserve its products (Cogent 
2013). Another interesting aspect is the fact that while in conventional freezing dif-
ferent species require different freezing protocols, when using the directional freez-
ing, experience shows that one freezing protocol basically fits all species. Yet, noting 
all these advantages, one might wonder how come the directional freezing did not 
become a widely used technology. Many speculations exist, but probably the most 
plausible one is related to marketing. We think that if there had been proper and 
more targeted marketing, this technology would have been today widely in use. In 
the absence of this, directional freezing of sperm remained almost entirely where it 
was when it was conceived more than 15 years ago—in limited use in scientific 
investigations and esoteric applications in wildlife.

Example of a Sperm Freezing Protocol
After collection and evaluation of the sample, it is either washed to remove 
the seminal fluid or not, depending on the species, diluted in cryopreservation 
media and chilled to ~5  °C.  Samples are then loaded into prechilled 
HollowTubes (IMT Ltd., Ness Ziona, Israel), leaving a space of about 1 cm 
between the level of the fluid and the labelled stopper. On the machine the 
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11.4  Desiccation

Cryopreservation works fairly well for gametes of both sexes as well as embryos of 
many domestic and wildlife species. Of course, as discussed above, various species 
have their unique aspects, sensitivities and limitations, but, as a whole, germplasm 
can be cryopreserved, stored and eventually used in assisted reproductive programs. 
This effective preservation method, however, comes with a heavy price tag. 
Maintaining cryopreserved samples in storage under liquid nitrogen (cryostorage) 
has high maintenance costs and requires dedicated specialised facilities, trained 
staff and guaranteed and continuous liquid nitrogen supply. Cryostorage is energy- 
dependent, has safety concerns and presents a risk of pathogen transmission between 
samples, all serious issues in clinical practice. Due to liquid nitrogen (LN) nature, 
shipping samples between locations are complicated and costly. Besides these 
intrinsic problems, the industrial production and distribution of LN and the energy 
demands of the dedicated storage facilities have a serious environmental impact, 
leaving a massive carbon footprint. For all these reasons, seeking an alternative that 
will help overcome these limitations is highly desirable.

As in many other instances, we would be right to check how extended preserva-
tion is done in Nature. To achieve long-term storage, Nature reduces metabolism, 
reduces chemical reactions and protects against temperature fluctuations and radia-
tion. To achieve all these, Nature’s method is simply to get rid of the water, the 
component without which chemical and biological reactions are brought to a halt. 
See, for example, the following account written by Antonie van Leeuwenhoek, the 
renowned Dutch microscopist, in 1702 (van Leeuwenhoek 1800):

warm block is set to +5 °C, the cold block to −50 °C and the collection cham-
ber to −100  °C.  A controlled ice nucleation stage is set into the program 
although a recent study showed that this stage may be eliminated (Saragusty 
et al. 2016). This ice nucleation position should be adjusted within the pro-
gram, depending on the size of the HollowTube. Velocity of the machine is set 
to the desired speed, which, in most studies, was shown to be 1.0–1.5 mm/s. 
Tubes with the samples are tilted to resuspend the spermatozoa homogenously 
in the media and then loaded into the warm block. The engine is activated, and 
freezing proceeds till the tubes reach the collection chamber from which they 
are transferred directly into liquid nitrogen. The machine automatically 
returns to the starting position to allow freezing of the next batch.

Thawing is done by first holding the tube at room temperature for 90 s and 
then placing it for 60 s in a dedicated thawing device (Harmony CryoCare, 
Chester, UK) in a 37 °C water bath, in which water flows through and around 
the tube while the tube is rotating.

For more elaborated explanation, please refer to Saragusty (2015).
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…In order more fully to satisfy myself in this respect, on the third of September, about 
seven in the morning, I took some of this dry sediment, which I had taken out of the leaden 
gutter and had stood almost two days in my study, and put a little of it into two separate 
glass tubes, wherein I poured some rain water which had been boiled and afterwards 
cooled… As soon as I had poured on the water… I examined it, and perceived some of the 
Animalcules lying closely heaped together. In a short time afterwards they began to extend 
their bodies, and in half an hour at least an hundred of them were swimming about the 
glass….

The process is known as anhydrobiosis or life without water. By definition, anhy-
drobiosis is an extremely dehydrated state in which organisms show no detectable 
metabolism but retain the ability to resume biological activity after rehydration 
(Sakurai et al. 2008). Preservation in the dry state is very common in plants (seeds) 
and many prokaryotes, but it can also be found in some eukaryotes (Hand et al. 
2011), including rotifers, tardigrades, nematodes, crustaceans, insects and more. 
What unifies them all is that they are relatively small, they have little or no control 
over the loss of water from their bodies, and they are generally inhabitants of 
ephemerally wet habitats. They desiccate at various developmental stages. In the 
absence of water, there can be no biochemical reactions, metabolism declines 
beyond detectable levels, and there is no water to freeze or boil and no active cell 
processes to be disrupted so they can withstand various environmental extremes. 
Anhydrobiosis allows animals to survive long periods without water, effectively 
extending their lifespan and facilitating reproduction or development at the most 
suitable conditions. Loss of water is gradual and slow, allowing the accumulation of 
a host of membranes, proteins and nucleus protective agents to as much as 50% of 
their dry weight. These protective agents include disaccharides, primarily trehalose 
(Crowe et  al. 1984), late embryogenesis abundant proteins (LEAp) (Hand et  al. 
2011), anhydrin (Goyal et  al. 2005), heat-shock proteins (Clark et  al. 2007) and 
more. Drying has been used for hundreds of years as a food preservation technique. 
Today it is widely used for pharmaceutical, bacterial, viral, fungal and yeast prepa-
rations as well as in the food industry (instant coffee, milk and egg powder, dried 
yeast and more).

Attempts to desiccate eukaryotic cells centred over the years almost entirely on 
spermatozoa, with some work on other cell types such as blood cells (Arav and 
Natan 2011; Crowe et al. 2005; Goodrich et al. 1992), fibroblasts (Das et al. 2010; 
Guo et al. 2000; Zhang et al. 2017) and other cell types (Li et al. 2012; Loi et al. 
2008; Natan et al. 2009). Probably two main reasons stand behind the selection of 
spermatozoa as the main target. First, spermatozoa are relatively small in size with 
very little water in them, and second, thanks to the protamines, the nucleus in sper-
matozoa is highly condensed and as such is more stable and less prone to DNA 
damages (Perreault et al. 1988; Yanagida et al. 1991). The famous paper by Polge 
and colleagues reporting the use of glycerol as cryoprotectant (Polge et al. 1949) is 
hailed as the starting point of the era of modern cryopreservation but not everybody 
remembers that in the same paper Polge et al. also reported on poultry sperm freeze- 
drying experiments. And impressively, they reported the recovery of as many as 
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50% of motile spermatozoa after rehydration. With 15% final glycerol concentra-
tion and only 3 h of drying, much moisture must have remained in the samples. The 
fact that the dried samples did not survive even 2 hours at room temperature further 
supports the notion that sufficient drying probably was not achieved. In the years 
that followed, several other attempts at freeze-drying were reported for bovine 
(Bialy and Smith 1957; Saacke and Almquist 1961; Sherman 1957) and human 
(Sherman 1954; Sherman 1963) spermatozoa, and although some reports claimed to 
be successful in obtaining surviving motile spermatozoa (Larson and Graham 1976; 
Meryman and Kafig 1959) and even offspring (Yushchenko 1957), these results 
could not be reproduced (Nei and Nagase 1961; Saacke and Almquist 1961), even 
by the same authors (Meryman and Kafig 1963).

Injecting sperm into oocytes was done at least since the early 1960s (Hiramoto 
1962), yet it was only after the intracytoplasmic sperm injection (ICSI) technique it 
was shown to lead to live offspring in the early 1990s (Palermo et al. 1992) that the 
utilisation of immotile spermatozoa became a viable option. This led to the first suc-
cess with freeze-dried spermatozoa (Wakayama and Yanagimachi 1998), demon-
strating that “dead” spermatozoa do not mean dead DNA. Following their success 
with mice, a large body of researchers have attempted to dry spermatozoa. These 
reports include other studies on mice as well as on various other species (Table 11.2).

To freeze-dry successfully, several conditions need to be met:

 1. Cellular membranes need to be stabilised to minimise damages occurring during 
the different lyophilisation steps:
 (a) During freezing, mechanical damage is caused primarily by ice crystal for-

mation. Increase in ice crystals’ size during slow freezing will increase 
mechanical damage (Saragusty et al. 2009c) and osmotic stress due to the 
increased concentration of solutes (Mazur et al. 1972) and lipid phase transi-
tion as lipids in the cell membranes turn from a liquid form into a gel form 
(Drobnis et al. 1993).

 (b) During the drying process, damage is induced by free radicals, peroxides, 
browning reactions, cross-linking of proteins and membrane deformation 
and fusion (Crowe et al. 1994; Loomis et al. 1979).

 (c) During rehydration there is a lyotropic phase transition as the membranes 
change back from gel into liquid (van Bilsen et al. 1994). Lysis of cellular 
membranes may also result from faster-than-desired flow of water back into 
the cells.

 2. The matrix/solution in which the cells are being lyophilised should have high 
glass transition temperature (Tg) to support and protect the biological materials 
for long periods of time at elevated temperatures.

In a way, drying can be viewed as the extension of cryopreservation. When freez-
ing cells in suspension, ice forms in the solution, leading to ever-increasing osmotic 
pressure and thus to dehydration of the cells. This process proceeds till the tempera-
ture is low enough and the extra- and intracellular compartments reach high enough 
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Table 11.2 Sperm desiccation

Species
Drying 
technique Study endpoint Reference

Boar Freeze-drying Blastocyst 
formation

Kwon et al. (2004), Men et al. (2013), 
Meng et al. (2010), Nakai et al. (2007), 
Olaciregui et al. (2017a)

Boar Freeze-drying MPN formation García et al. (2014)
Boar Freeze-drying Oocyte gene 

activation
Men et al. (2016)

Boar Freeze-drying Ultrastructural 
analysis

Pfaller et al. (1976)

Boar Evaporative- 
drying

Blastocyst 
formation

Li et al. (2017)

Bovine Freeze-drying Blastocyst 
formation

Hara et al. (2013), Keskintepe et al. 
(2002), Martins et al. (2007)

Bovine Freeze-drying Zygote, 
methylation

Abdalla et al. (2009b)

Bovine Freeze-drying Fertilisationa Meryman and Kafig (1959)
Bovine Freeze-drying Sperm asters and 

microtubule 
formation

Hara et al. (2011)

Bovine Freeze-drying Meiosis resumption Abdalla et al. (2009a)
Bovine Freeze-drying Sperm motility Bialy and Smith (1957), Meryman and 

Kafig (1959), Saacke and Almquist 
(1961), Sherman (1957)

Bovine Freeze-drying Ultrastructural 
analysis

Pfaller et al. (1976)

Bovine Heat drying Blastocyst 
formation

Lee and Niwa (2006)

Bovine Convective 
drying

Sperm motility, 
membrane integrity

Sitaula et al. (2009)

Buffalo Freeze-drying DNA integrity Shahba et al. (2016)
Cat Freeze-drying Blastocyst 

formation
Moisan et al. (2005)

Cat Freeze-drying Cleavage rate Ringleb et al. (2011)
Cat Freeze-drying DNA integrity Magalhães et al. (2012)
Cat Air-drying Blastocyst 

formation
Moisan et al. (2005)

Cat Microwave Blastocyst 
formation

Patrick et al. (2017)

Chimpanzee Freeze-drying MPN development 
in mouse oocyte

Kaneko et al. (2014)

Dog Freeze-drying MPN formation Watanabe et al. (2009)
Dog Freeze-drying DNA integrity Olaciregui et al. (2015)
Fat-tailed 
Dunnart

Freeze-drying Motility, viability, 
acrosome and DNA 
integrity

Czarny et al. (2009)

(continued)
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Table 11.2 (continued)

Species
Drying 
technique Study endpoint Reference

Giraffe Freeze-drying MPN development 
in mouse oocyte

Kaneko et al. (2014)

Hamster Freeze-drying Live offspring Muneto and Horiuchi (2011)
Hamster Freeze-drying MPN formation Katayose et al. (1992)
Horse Freeze-drying Live offspring Choi et al. (2011)
Horse Freeze-drying DNA integrity Olaciregui et al. (2016), Oldenhof et al. 

(2017)
Human Freeze-drying Sperm survival Sherman (1954), Sherman (1963)
Human Freeze-drying MPN formation Katayose et al. (1992)
Human Freeze-drying Chromosome 

integrity
Kusakabe et al. (2008)

Human Freeze-drying DNA integrity Arav and Saragusty (2016), Gianaroli 
et al. (2012)

Human Freeze-drying Ultrastructural 
analysis

Zhu et al. (2016)

Jaguar Freeze-drying MPN development 
in mouse oocyte

Kaneko et al. (2014)

Long-haired 
rat

Freeze-drying MPN development 
in mouse oocyte

Kaneko et al. (2014)

Mouse Freeze-drying Live offspring Kaneko and Nakagata (2005), Kaneko 
and Nakagata (2006), Kaneko and 
Serikawa (2012a), Wakayama and 
Yanagimachi (1998), Wakayama et al. 
(2017), Ward et al. (2003)

Mouse Freeze-drying Day ≥14 foetuses Bhowmick et al. (2003), Kaneko et al. 
(2003), Kawase et al. (2007a), 
Kusakabe et al. (2001), Kusakabe et al. 
(2008)

Mouse Freeze-drying Blastocyst 
formation

Kawase et al. (2005), Kawase et al. 
(2007b)

Mouse Freeze-drying Chromosome 
integrity

Kusakabe and Tateno (2011), Kusakabe 
and Tateno (2017)

Mouse Partial 
convective 
drying

Live offspring Li et al. (2007), McGinnis et al. (2005)

Mouse Convective 
drying

Live offspring Liu et al. (2012), Liu et al. (2014)

Mouse Convective 
drying

Day 15 foetuses Bhowmick et al. (2003)

Nile tilapia Freeze-drying ICSI could not be 
performed

Poleo et al. (2005)

Poultry Freeze-drying Sperm motility Polge et al. (1949)
Rabbit Freeze-drying Live offspring Liu et al. (2004)
Ram Freeze-drying Blastocyst 

formation
Olaciregui et al. (2017b), Palazzese 
et al. (2017)
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viscosity to form glass. Drying follows basically the same idea only instead of 
removing the water from the system in the form of ice as happens during freezing, 
water is removed through sublimation (freeze-drying, also known as lyophilisation) 
or evaporation (air drying, vacuum drying, heat drying, etc.). The vast majority of 
studies used lyophilisation as the drying technique; however, some success was also 
reported when using other drying methods such as air drying (Alonso et al. 2015), 
drying with inert gas at ambient temperatures (Bhowmick et al. 2003; Li et al. 2007; 
Liu et al. 2012; Liu et al. 2014; McGinnis et al. 2005), heat drying (Lee and Niwa 
2006; Lee et al. 2013), spin drying (Chakraborty et al. 2011), microwave drying 
(Patrick et al. 2017) or vacuum drying (Meyers 2006). In the presence of sugars 
(disaccharides), such as trehalose or sucrose, the lipid phase transition and the glass 
transition temperatures considerably increase, allowing the formation of glass (vit-
rification) at above-zero temperatures (Crowe et al. 1998). Another role suggested 
for these sugars is the replacement of water at the polar head group region of the 
membranes and in protein structures, thereby enhancing their stability (Crowe et al. 
1992; Leslie et al. 1995).

Despite many studies on the subject, advancement in this field is still largely by 
trial and error, inherently a very time-consuming, expensive and inefficient scien-
tific investigation. Although desiccated spermatozoa still do not resume motility 
upon rehydration, several interesting and rather uniform aspects emerged. First, 
drying seems to be damaging to the cellular membrane, including the tail, with the 
neck and end-piece being especially sensitive. It is clear, thus, that better membrane 
stabilisation or possibly altered membrane fluidity may improve survival. Second, 
the DNA seems to be fairly stable and survive well such insults. Differences between 
species and even between males within the same species suggest varying levels of 
sensitivity. Third, although a variety of solutions have been used, our impression is 
that, as a group, they are mostly not very different from each other and it is possible 
that a universal drying solution is out there waiting to be discovered. Fourth, com-
position of the desiccation solution, termed here xeroprotective media, is different 
from the cryopreservation media specifically designed for the species in question. 

Table 11.2 (continued)

Species
Drying 
technique Study endpoint Reference

Rat Heat drying Live offspring Lee et al. (2013)
Rat Freeze-drying Live offspring Hirabayashi et al. (2005), Hochi et al. 

(2008), Kaneko and Serikawa (2012b)
Rhesus 
macaque

Vacuum 
drying

Blastocyst 
formation

Klooster et al. (2011), Meyers et al. 
(2009)

Rhesus 
macaque

Freeze-drying Sperm asters, MPN 
formation

Sánchez-Partida et al. (2008)

Weasel Freeze-drying MPN development 
in mouse oocyte

Kaneko et al. (2014)

a The authors and others later failed to duplicate these results (Meryman and Kafig 1963; Saacke 
and Almquist 1961)

Abbreviations: MPN male pronuclei, ICSI intracytoplasmic sperm injection
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Still, despite a decrease in sperm motility after freezing, relatively high motility can 
often be preserved if freezing is done properly. This raises the question when exactly 
do the spermatozoa lose their motility and membrane integrity? Does it happen dur-
ing the drying process or is it an outcome of rehydration? Fifth, researchers seem to 
be divided into two schools with respect to how the samples are frozen. One group 
seems to assume that motility/viability a priori cannot be preserved, so samples are 
frozen with minimal cryoprotection by snap freezing. The other group of thought 
still strives to regain some motility after rehydration, so proper cryopreservation 
techniques are used to freeze the samples, and alterations to the xeroprotective 
media are introduced with the aim of preserving motility.

Another interesting aspect of desiccation is the fact that while drying of bacteria 
or yeast is successful and the culture “returns to life” after rehydration, desiccated 
spermatozoa are generally considered dead (no motility, loss of cellular membrane 
integrity). When it comes to yeast or gram-negative bacteria, they both have cellular 
membrane and cell wall. Could it be that the additional layer, which is missing in 
eukaryotic cells, provides the needed protection? Possible, but if this was the case, 
drying would not be successful in gram-positive bacteria, which is not the case. An 
alternative explanation suggests that the secret is the ability to multiply. Bacteria, 
both gram-positive and gram-negative, and yeast possess the ability to multiply, 
usually with relatively short generation time. This is not the case for the majority of 
eukaryotic cells. Experiments in drying eukaryotic cells show that under some con-
ditions, a few viable cells can be found. When this happens with bacteria or yeast, 
these few surviving organisms can start multiplying themselves to form new popu-
lations in culture. Following this line of thought one would expect that eukaryotic 
cells that possess the ability to multiply themselves will also do so after rehydration. 
This is exactly what happens when the human hepatoma cell line, HepG2 or hema-
topoietic stem cells were lyophilised (Buchanan et al. 2010; Li et al. 2012; Natan 
et  al. 2009). Drying of other cell types such as sheep granulosa cells (Loi et  al. 
2008) or porcine foetal fibroblasts (Das et al. 2010) and, of course, spermatozoa 
from a number of species may have resulted in cellular survival, but these cell types 
do not naturally multiply.

Oocyte drying, like oocyte freezing, is a big challenge due to their size and high 
water content. In an attempt to overcome this limiting factor, drying was attempted 
on germinal vesicles extracted from cat oocytes (Graves-Herring et al. 2013). These 
cannot survive on their own, with or without drying. The DNA of these germinal 
vesicles, however, remained viable and was able to direct embryonic development 
once inside a fresh ooplast/oocyte.

As an alternative to desiccation of gametes, the possibility to desiccate somatic 
cells has been explored primarily over the past 20 years or so. Somatic cells have the 
advantage of carrying both the maternal and the paternal genetic material; they are 
highly available, easy to obtain and, in many cases, easy to grow and multiply 
in vitro. These cells, when used for somatic cell nuclear transfer (SCNT), can lead 
to normal embryonic development to term, as was demonstrated in 1997 by the birth 
of Dolly the sheep (Wilmut et al. 1997) and a large number of other species since 
then. In 2008 it was shown that freeze-dried somatic cells can also lead to 
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embryonic development in vitro (Loi et al. 2008). As of writing these lines, an off-
spring derived from SCNT with desiccated somatic cell is still to be born. We esti-
mate that this would not take very long to happen. With recent advancements in 
assisted reproductive techniques, such desiccated somatic cells can be utilised in yet 
another way. A transformative technology, published in 2006, made it possible to 
transform somatic cells into pluripotent cells using a cocktail of four transcription 
factors – Pou5f1, Sox2, Klf4 and Myc (Takahashi and Yamanaka 2006). These cells, 
known as “induced pluripotent stem cells” or iPSCs, have the potential to develop 
into any of the animal’s tissue types, germ cells included. A number of recent stud-
ies have demonstrated that by complex and extended in vitro culture, such iPSCs 
can be directed to develop into functional male or female gamete-like cells known 
as artificial gametes (for a recent review, see Hendriks et al. (2015)). As a proof of 
principle, birth of healthy and fertile offspring from such artificial gametes has been 
demonstrated in mice (Hayashi et al. 2011; Hayashi and Saitou 2013; Hikabe et al. 
2016). Although, at present, this technique has only been demonstrated in mice and 
only with iPSCs derived from fresh somatic cells, we believe that in the not-too- 
distant future, we shall see applications of this technology to other species and pos-
sibly also with desiccated somatic cells.
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Abstract
Over the past decades, in vitro production (IVP) of bovine embryos has been 
significantly improved, and in particular bovine IVP is now widely applied under 
field conditions. This in  vitro technique provides new opportunities for cattle 
producers, particularly in the dairy industry, to overcome infertility and to 
increase dissemination of animals with high genetic merit. Improvements in 
OPU/IVP resulted in large-scale international commercialization. More than half 
a million IVP embryos are generated on the yearly basis demonstrating the enor-
mous potential of this technology. These advances and the fact that bovine and 
human early development is remarkably similar have prompted the use of bovine 
embryos as a model system to study early mammalian embryogenesis including 
humans. In horses, OPU/IVP is also an established procedure for breeding infer-
tile and sports mares throughout the year. It requires ICSI because conventional 
IVF does not work in this species. In small ruminants, application of IVP on the 
commercial and research basis is low compared to other livestock species.

Despite all the improvements, embryos generated in  vitro still differ from 
their in vivo-derived counterparts. Embryos must adjust to multiple microenvi-
ronments at preimplantation stages. Consequently, maintaining or mimicking the 
in vivo situation in vitro will aid to improving the quality and developmental 
competence of the resulting embryo.

The successful clinical application of the techniques in reproductive biotech-
nology requires both species-specific clinical skills and extensive laboratory 
experience.
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12.1  Introduction

The birth of the first IVF calf derived from an in  vivo matured oocyte in 1981 
(Brackett et al. 1982) and the discovery of heparin as capacitating agent for bull 
sperm in 1986 (Parrish et  al. 1986) were two key events, ultimately resulting in 
efficient IVP systems for bovine preimplantation embryos, including in vitro matu-
ration (IVM) of the immature oocyte to the matured metaphase II stage, in vitro 
fertilization (IVF), and subsequent in vitro culture (IVC) of embryos to the desired 
stage of development, preferably the blastocyst stage. The first calves produced 
entirely from IVM-IVF-IVC were born in 1987 (Fukuda et al. 1990).

While artificial insemination (AI) is an effective way to disseminate the genetics 
of valuable sires, with the implementation of embryo biotechnologies, female 
genetics can also be distributed worldwide. In the last decades, major advances 
were made in multiple ovulation and embryo transfer (MOET), ovum pickup 
(Pieterse et  al. 1991; Kruip et  al. 1991) combined with in  vitro production of 
embryos (OPU/IVP) and cryopreservation (Colleau 1991).

The current technology of OPU/IVP harvesting immature oocytes from living 
cows can routinely be performed twice a week for an extended period of time with-
out any detrimental effects on the donor’s cow fertility (Chastant-Maillard et  al. 
2003). At present, the application of IVP combined with ovum pickup (OPU) from 
valuable donors is increasing (again) due to new breeding strategies based on 
genomic selection using SNP (single nucleotide polymorphism) chips. Depending 
on the chip used, thousands of these SNPs can be analyzed even in a biopsy taken 
from an embryo. This technology is now reaching routine usage for genomic selec-
tion (GS) in cattle (Ponsart et al. 2014).

With regard to IVP efficiency (Table 12.1), approximately 80–90% of immature 
bovine oocytes undergo nuclear maturation in vitro, about 80% undergo fertiliza-
tion, 30–40% develop to the blastocyst stage, and around 50% of the transferred 
embryos establish and maintain a pregnancy (Galli et al. 2014; Lonergan et al. 2016; 
Wrenzycki et al. 2007).

According to the International Embryo Technology Society (IETS) statistics 
(Fig. 12.1), the number of embryos produced in vitro and transferred into recipients 
has increased more than 10 times in the last century and is now approaching the 
numbers of embryos produced in vivo by superovulation. This indicates that OPU 
and IVP are considered a reliable and cost-effective technique and have acquired a 
significant role in cattle breeding. Detailed data stemming from the year 2016 are 
shown in Tables 12.2a and 12.2b.

Table 12.1 Efficiencies of 
bovine IVP

Maturation ratea 90%
Fertilization ratea 75–80%
Cleavage ratea 60–70%
Blastocyst ratea 30–40%
Pregnancy rateb 50–60%
Calves bornc 70–90%

acalculated on the number of immature oocytes
bcalculated per embryo transfer
ccalculated per pregnancy
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Fig. 12.1 Bovine embryo transfer statistics published annually by the International Embryo 
Technology Society (IETS)

Table 12.2a Collection and transfer of bovine OPU/IVP embryos by regions (year 2016)

Region
Collection Transfers
Donors Oocytes Embryos Fresh embryos Frozen embryos

Africa 619 19,062 2167 379 246
Asiaa 3177 59,224 9438 3250 1164
Europe 10,651 94,407 18,879 10,424 3635
North America 45,918 805,072 260,574 80,825 50,672
Oceania 2241 21,587 6304 4732 1702
South America 49,739 1,138,302 378,291 230,263 65,235
Grand Total 112,345 2,137,654 675,653 329,873 122,654

aData from 2015

Table 12.2b Collection and transfer of bovine abattoir-derived IVP embryos by regions (year 
2016)

Region
Collection Transfers
Donors Oocytes Embryos Fresh embryos Frozen embryos

Africaa 156 2033 235 0 0
Asiaa 35,335 714,783 56,740 10,685 7831
Europe 256 18,317 1095 40 133
North Americaa 5 9117 1037 273 418
Oceania 4 60 16 8 4
South America 1345 5017 1511 0 0
Grand Total 37,101 749,327 60,634 11,006 8386

aData from 2015
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12.2  General Steps of In Vitro Production of Embryos

Production of embryos in  vitro is a three-step process involving IVM, IVF, and 
subsequent culture of the presumptive zygote to the blastocyst stage (IVC). The 
procedure of IVP is best developed in cattle. A schematic drawing is shown in 
Fig. 12.2. Figure 12.3a illustrates the processes occurring during oocyte growth and 
maturation, ovulation, fertilization, and early embryonic development within the 
oviduct, finally leading to the blastocyst which has already entered the uterus. 
Representative pictures of oocytes and early bovine embryos of in vivo and in vitro 
origin are shown in Fig. 12.3b.

12.2.1  Collection of Cumulus-Oocyte Complexes (COC)

COC can be collected from ovaries of slaughtered or euthanized animals or from 
those of live animals. With slaughterhouse ovaries, COC are usually isolated by 
aspiration or slicing, less often via isolation and dissection of follicles. With these 
methodologies, cumulus-enclosed immature oocytes at the germinal vesicle (GV) 
stage can be harvested. Immature oocytes are also collected from antral follicles of 
living animals via the OPU technology. This is a noninvasive and repeatable tech-
nique which can also be used to collect MII oocytes shortly before ovulation with or 
without hormonal stimulation similar as in human-assisted reproduction.

OPU without hormonal pre-stimulation can be routinely done twice a week. 
Twice a week OPU can be done for an extended period of time without detrimental 

In vitro maturation (IVM)

In vitro fertilization (IVF)

Collection of COC
(cumulus oocyte complexes)

In vitro culture (IVC)

Fresh transfer/cryopreservation

Fig. 12.2 In vitro production of embryos (for further information, see text)
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effects on the donor cow’s fertility (Chastant-Maillard et al. 2003) and will result in 
a higher number of embryos produced per cow per time unit compared to the once 
a week OPU schedule. Best results are obtained when a 3- and 4-day or 2- and 5-day 
interval is maintained between OPU sessions (Merton et al. 2003). OPU was ini-
tially applied on problem cows that did not respond to superovulation (Kruip et al. 
1994; Looney et al. 1994). It can be used to collect COC also from pregnant cows 
and heifers, including prepubertal heifers (Presicce et  al. 1997). The number of 
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Fig. 12.3 (a) Oocyte growth and maturation, fertilization, and early embryonic development (see 
text). (b) Oocyte and embryo development in vivo and in vitro
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follicles can be increased by the use of a hormonal pre-stimulation. The disadvan-
tage of pre-stimulation is that it involves the use of hormones, whereas the lack of 
requirements for hormones in the case of OPU has been generally considered an 
advantage compared to MOET (Merton et al. 2003). In contrast to oocytes recov-
ered from abattoir ovaries, the genetic merit and health status of the donor animal 
including its oocytes are known. The number of oocytes collected from an animal 
during a single session of OPU depends on a variety of technical and biological fac-
tors (Merton et al. 2003). Usually, all follicles between 3 and 8 mm in diameter are 
aspirated.

OPU has become possible due to the development of ultrasound-guided trans-
vaginal oocyte aspiration in humans and the adoption in the bovine in 1988 (Pieterse 
et al. 1988). Attempts were undertaken to combine OPU with color Doppler ultra-
sonography which is a useful, noninvasive technique for evaluating ovarian vascular 
function, allowing visual observation of the blood flow in the wall of preovulatory 
follicles (Brannstrom et al. 1998). Blood flow determination of individual preovula-
tory follicles prior to follicular aspiration for human IVF therapy provides impor-
tant insight into the intrafollicular environment and may predict the developmental 
competence of the corresponding oocyte (Coulam et al. 1999; Huey et al. 1999). In 
cattle, it has been shown that the time interval between the individual OPU sessions 
had an effect on the quality of oocyte and embryos at the molecular level, whereas 
differences in the perifollicular blood flow did not (Hanstedt et al. 2010). An increase 
in blood supply to individual follicles appears to be associated with increased fol-
licular growth rates, while a reduction seems to be closely related to follicular atre-
sia (Acosta et al. 2003; Acosta 2007).

There are various systems used for grading bovine COC by visual assessment of 
morphological features, including compactness and quantity of surrounding follicu-
lar cells and homogeneity of the ooplasm as well as the size of the oocyte. An 
example is given in Fig. 12.4. Oocytes smaller than 110 μm are transcriptionally 
active and have a reduced ability to resume meiosis (Fair et al. 1995).

Taken together, OPU can be considered a mature technique and no major 
improvements should be expected in the technology and its results in the near future.

12.2.2  In Vitro Maturation (IVM)

Cumulus-oocyte complexes (COC) collected from ovaries of slaughtered or eutha-
nized animals or from living animals via OPU require IVM as they are arrested at 
the GV stage. Maturation involves a series of events that already begin in fetal life 
with the initiation of meiosis. At birth, the oocytes are arrested at the diplotene 
stage. After puberty when they are exposed to preovulatory surges of LH and FSH, 
they proceed with meiosis and are arrested again at the metaphase II, the stage at 
which they are ovulated (Monniaux et al. 2014). In addition, optimal conditions for 
cumulus cells surrounding the oocyte need to be considered as there is a complex 
bi-directional communication between these two cell types (Monniaux 2016; 
Gilchrist 2011).
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Maturation is subdivided in nuclear and cytoplasmic maturation. Nuclear matu-
ration refers to the resumption of meiosis, from germinal vesicle breakdown 
(GVBD), through metaphase I, anaphase, telophase, and rearrest at metaphase II 
(MII), and can be assessed noninvasively by determining extrusion of the first polar 
body. Nuclear maturation does not necessarily ensure that cytoplasmic maturation 
has been completed and should not be used as the sole determinant of oocyte qual-
ity. The oocyte must undergo a complex array of cytoplasmic rearrangements that 
allow the oocyte to support subsequent fertilization and initiate embryonic develop-
ment. Multiple processes are involved in cytoplasmic maturation, including carbo-
hydrate and lipid metabolism, mitochondrial function and location, reduction of 
oxygen radicals, accumulation of follistatin, epigenetic programming, communica-
tion between cumulus cells and the oocyte, and secretion of oocyte-derived growth 
factors (Sirard 2016).

Proper maturation of the bovine oocyte from the GV stage to metaphase II takes 
place within a period of 20–24 h and is a prerequisite for fertilization and preim-
plantation development. It is possible to achieve blastocyst rates of up to 70% if 
in vivo matured oocytes are used. In contrast, if oocytes are matured in vitro, blas-
tocyst rates are usually only half that of those matured in vivo. This rather limited 
success may be attributed to the heterogeneous population of oocytes which are 
retrieved from follicles of 3–8  mm rather than from preovulatory follicles. In 
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contrast to in vivo ovulated oocytes, these oocytes usually would not make it up to 
the preovulatory stage and are matured in vitro. Therefore, substantial efforts have 
been devoted to the establishment of noninvasive and non-perturbing means for 
selecting the most competent oocytes (Fair 2010; Krisher 2013; Wrenzycki and 
Stinshoff 2013).

Maturation is initiated immediately following the removal of the immature 
oocyte from small antral follicles, and such oocytes may have neither the time nor 
the correct environment to complete the necessary changes required for subsequent 
successful development (Lonergan and Fair 2016; Krisher 2013; Wrenzycki and 
Stinshoff 2013).

Much of the success of IVP critically depends on the quality of the starting mate-
rial, the oocyte. Developmental competence of the oocyte also termed oocyte qual-
ity is defined as the oocyte’s ability to mature, to be fertilized, and to give rise to 
normal and healthy offspring (Duranthon and Renard 2001). The success of IVM is 
also dependent on the composition of the culture media which are usually quite dif-
ferent from in vivo conditions (Roberts et al. 2002; Sutton et al. 2003). A better 
understanding of intrafollicular conditions is critical for successful oocyte selection 
and maturation regardless of the species. In this context, profiling bovine follicular 
fluid revealed important clues about the composition of bovine follicular fluid 
(Sanchez-Guijo et  al. 2016). Therefore, metabolomic analysis of follicular fluid 
may be a useful tool for characterizing oocyte quality (Sinclair et al. 2008; Bender 
et al. 2010).

Although substantial progress has been made to improve the efficiency of IVM 
protocols, there is a lack of consistency in the success rates of conventional in vitro 
maturation protocols compared to the in vivo situation. Multiple factors likely con-
tribute to the overall poorer quality of in vitro matured oocytes. One of the impor-
tant factors may be oxidative stress (OS). The generation of prooxidants such as 
reactive oxygen species (ROS) is an important phenomenon in culture conditions 
(Khazaei and Aghaz 2017).

The so-called simulated physiological oocyte maturation (SPOM) system had 
been introduced a few years ago (Albuz et  al. 2010). It prevented spontaneous 
resumption of meiosis after mechanical oocyte retrieval and thereby improved 
in vitro embryo development. However, due to the fact that these first results were 
not repeatable, a revised version has been reported (Gilchrist et al. 2015). At the 
moment, most laboratories practicing IVM of cattle oocytes use a relatively simple 
oocyte maturation system.

Given that oocyte maturation in vivo takes place in the follicle prior to ovulation, 
and given the difficulties to mimic the situation in the preovulatory follicle in vitro, 
it is attractive to mature oocytes within the follicle. To achieve this, a modified ovum 
pickup equipment has been used to transfer in vitro matured oocytes into the pre-
ovulatory follicle of synchronized heifers (follicular recipients), enabling subse-
quent ovulation, in vivo fertilization (the animals have been artificially inseminated 
prior to oocyte transfer), and in vivo development. On average, 35% of embryos 
were recovered in excess after uterine flushing at Day 7. This technique is called 
intrafollicular oocyte transfer (Kassens et  al. 2015). Transfer of frozen-thawed 
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IFOT-derived blastocysts to synchronized recipients (uterine recipients) resulted in 
8 pregnancies out of 19 transfers. In total, seven pregnancies presumed to be IFOT-
derived went to term, and microsatellite analysis confirmed that five calves were 
indeed derived from IFOT. These were the first calves born after IFOT in cattle. The 
present study established the proof of principle that IFOT is a feasible technique to 
generate high-quality embryos capable of developing to apparently high-quality 
blastocysts as well as healthy calves. Blastocysts (Spricigo et al. 2016) and calves 
(Michael et  al. 2017) could also be produced after full in  vivo development of 
immature slaughterhouse derived oocytes transferred to the preovulatory follicle. 
Therefore, the embryo production by IFOT of immature oocytes represents an alter-
native for the production of a large number of embryos without requiring hormones 
and basic laboratory handling only. As an alternative procedure, gamete intrafallo-
pian transfer (GIFT, transfer of in vitro matured COC simultaneously with capaci-
tated spermatozoa) is a viable compromise between in vitro and in vivo conditions 
and provides an option for reducing impacts of in  vitro effects (Wetscher et  al. 
2005).

A better understanding of the in vivo regulation of follicular development and in 
particular of final maturation, in concert with oocyte differentiation by intrafollicu-
lar factors and intercellular communication, will lead to improved in vitro protocols 
for final maturation, thus compensating for the lack of preovulatory development of 
immature oocytes (Wrenzycki and Stinshoff 2013).

12.2.3  In Vitro Fertilization (IVF)

IVF is a complex step whose success requires appropriate oocyte maturation, sperm 
selection, sperm capacitation, and IVF media. In vivo, fertilization rates are around 
90% for heifers and cows (Diskin and Sreenan 1980).

Semen samples contain a heterogeneous population of sperm cells. In vivo, 
sperm cells are thought to be selected by various mechanisms within the female 
reproductive tract, with the result that a small number of spermatozoa found near 
the oocyte are typically those best capable to penetrate the zona pellucida and fertil-
ize the oocyte. However, when using IVF, these natural selection mechanisms are 
circumvented.

Treatment of bull sperm prior to IVF generally involves the selection of cells 
with the highest progressive motility. Furthermore, seminal plasma, cryoprotec-
tants, and other factors are removed. One of the most common methods for prepar-
ing spermatozoa for IVF is to centrifuge them through a concentration gradient, 
such as a 45% Percoll mixture layered on a 90% solution.

A variant of colloid centrifugation using only one layer of colloid (in which case 
there is no gradient) has been developed. Single-layer centrifugation (SLC) through 
a species-specific colloid has also been shown to be effective in selecting spermato-
zoa with good motility, normal morphology, and intact chromatin (Thys et al. 2009; 
Goodla et al. 2014; Morrell et al. 2014; Gloria et al. 2016). An alternative method is 
the swim-up procedure. The disadvantages of swim-up are that it lasts 
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approximately 45–60 min and allows only 10–20% of the spermatozoa in the sam-
ple to be recovered. For colloid centrifugation, only a 25-min preparation time is 
needed (including the centrifugation), and a recovery rate of >50% is commonly 
achieved (Thys et al. 2009), which is critically depending on the sperm quality of 
the original sample.

The changes a sperm cell has to go through before it can successfully fertilize 
an oocyte are summarized under the term capacitation (Brackett and Oliphant 
1975). Capacitation is recognized as a complex series of biochemical and physio-
logical reactions (Breitbart et al. 1995), including the expression of hyperactivated 
patterns of motility and the acquisition of the capacity to respond to signals origi-
nating from the oocyte. Media have been developed to support this process, e.g., 
TALP medium. As mentioned earlier, the primary capacitation agent in current 
IVF systems is heparin. The majority of semen samples used for IVF is frozen-
thawed. Apparently, fresh semen requires a longer capacitation period than the 
frozen one. Frozen-thawed semen has been intensively screened prior to cryo-
preservation. Furthermore, there are numerous studies indicating that the selection 
of bulls producing sperm cells with a high IVF capacity is an important factor in 
achieving successful and reproducible IVP results. The marked variability that 
occurs among bulls in the suitability of semen for IVF may be due to the penetra-
tion of the zona and/or ooplasm or processes taking place in the ooplasm. The most 
common final sperm concentration used in the IVF drop is 1  ×  106 sperm/mL, 
whereas in the cow’s oviduct, fertilization is likely to occur in a sperm/oocyte ratio 
close to 1 to 1 (Hunter 1996).

Once IVM is complete, oocytes are ready to be fertilized. This involves the co-
incubation of oocytes with sperm cells. Most laboratories allow for 18–19 h of co-
incubation. During this time period, sperm pass through the cumulus cell layers 
enclosing the oocyte, attach and bind to the zona pellucida, undergo the acrosome 
reaction, and finally penetrate the zona pellucida. The fertilizing sperm cell will 
then bind to and fuse with the oolemma, followed by activation of the oocyte and 
formation of male and female pronuclei. After co-incubation, attached cumulus 
cells are removed from the zonae. Successful fertilization is characterized by the 
extrusion of the second polar body and the formation of the female and male pro-
nucleus. In cattle, the pronuclei are not visible due to the amount of lipid vesicles 
which is in contrast to the picture in for example humans and mice. Among the 
abnormalities seen after IVF are polyspermy and parthenogenesis (Parrish 2014).

Beside the conventional co-incubation of matured COC and sperm cells, there 
are four approaches available to assist fertilization when sperm numbers are reduced 
or when sperm motility is compromised; these approaches are partial zona dissec-
tion, zona thinning/zona drilling, subzonal sperm insertion (SUZI), and intracyto-
plasmic sperm injection (ICSI). ICSI involves the fertilization of MII oocytes by 
direct injection of a spermatozoon (Goto and Yanagita 1995). However, even hap-
loid parthenogenetic embryos injected with sperm can result in full-term develop-
ment in mice suggesting that sperm reprogramming sufficient to support full and 
healthy development can occur not only when M II oocytes are fertilized and in 
mitotic embryos well after meiotic exit (Suzuki et al. 2016).
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ICSI is performed with the aid of a pair of glass pipettes adjusted to an inverted 
microscope, where the embryologist holds the oocyte with one pipette and injects a 
selected sperm cell with the second pipette straight into the ooplasm as shown in 
Fig. 12.5. The clinical use of ICSI was developed many years ago as a solution for 
some sperm-related male infertility in human-assisted reproduction (Palermo et al. 
1992). The use of ICSI in cattle has never attracted much interest and has mainly 
been used for research purposes, essentially because IVF after heparin capacitation 
works very efficiently with the majority of bulls.

The success of ICSI in cattle is usually poor (Arias et al. 2014; Sekhavati et al. 
2012) and appears to be limited by the low-activating stimulation of the injected 
spermatozoon (Catt and Rhodes 1995; Malcuit et al. 2006) and asynchronous pro-
nucleus formation (Chen and Seidel 1997). Furthermore, bovine sperm are espe-
cially resistant to nuclear decondensation by in  vitro matured oocytes, and this 
deficiency cannot be simply overcome by exogenous activation protocols. Therefore, 
the inability of a suboptimal ooplasmic environment to induce sperm head decon-
densation limits the success of ICSI in cattle (Aguila et al. 2017). In addition, the 
size of bovine sperm cells requires a pipette with a relatively large outer diameter of 
10 μm that could be responsible for the damage on the cytoskeleton, thus reducing 
the developmental potential of the resulting embryos (Galli et  al. 2003). Taken 
together, the efficiency of intracytoplasmic sperm injection (ICSI) in cattle is low 
compared to other species due in part to inadequate egg activation and sperm 
nucleus decondensation after injection.

12.2.4  In Vitro Culture (IVC)

IVC of bovine embryos is the last step in IVP and involves approximately 6 days of 
culture from the presumptive zygote onward. During the early post-fertilization 
period, several major developmental events occur in the embryo including (1) the 
first cleavage division, (2) the activation of the embryonic genome, (3) the compac-
tion of the morula, and (4) the formation of the blastocyst.

Holding
pipette

Matured
oocyte

ICSI
pipette

a b

Fig. 12.5 Intracytoplasmic sperm injection (green circle, polar body; green arrow, sperm cell)
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Previously embryo requirements were not known, and a temporary in vivo cul-
ture in surrogate oviducts of sheep was performed (Lazzari et al. 2010). Oviducts of 
several other mammalian species including rabbits and mice have also been used to 
culture bovine embryos in vivo. The isolated mouse oviduct has also been employed 
as a system to culture bovine embryos successfully (Minami et al. 1988; Rizos et al. 
2010). The success of in vitro embryo production techniques demonstrates that it is 
possible to bypass the oviduct during early development and, to a certain extent, 
replicate the conditions in vitro. However, overall they do not adequately mimic 
well enough the complex series of development-specific steps for which the oviduct 
has evolved a unique and dynamic microenvironment (Kenngott and Sinowatz 
2007; Besenfelder et al. 2012).

The most common media for culturing bovine embryos are variations of the 
original synthetic oviduct fluid (SOF) medium (Tervit et al. 1972). SOF is now part 
of most routine bovine IVP systems with/without serum. Embryos can be cultured 
either in only one medium throughout the entire time or in a sequential system in 
which the medium formulation changes at certain time points in the culture period, 
i.e., so-called stage-specific media. These sequential media try to mimic the physi-
ological changes that embryos encounter in vivo when they travel down the oviducts 
into the uterus. Parameters vary from lab to lab, e.g., the volume of medium and the 
atmosphere in the incubator.

IVC conditions have been improved in the last years, mainly by adjustment of 
media formulations. However, while more than 30% blastocyst formation could be 
achieved in most culture systems, it soon became obvious that quantity did not 
always match quality (Lonergan et  al. 2006; Niemann and Wrenzycki 2000; 
Wrenzycki et al. 2005, 2007) and that serum supplementation was detrimental to 
embryo/fetal development as one main causal factor of the so-called large offspring 
syndrome (LOS), characterized by altered embryonic and fetal growth, deviant 
embryonic and fetal gene expression patterns, and high perinatal losses (Young 
et al. 1998; Lazzari et al. 2002). A large field study demonstrated that the incidence 
of LOS was greatly reduced by in vitro culture in cell-free and serum-free SOF 
media (van Wagtendonk-de Leeuw et al. 2000). These observations highlight the 
importance of the post-fertilization culture environment for the quality of the result-
ing blastocysts. However, the existence of diverse embryo culture media and meth-
ods makes it very challenging to define the optimal components of embryo culture 
media. Undefined media supplemented with serum and somatic cells as monolayer 
have been replaced by semi-defined media culturing embryos in the absence of cells 
with no serum supplementation. Completely defined media, developed by modifica-
tions of the SOF medium with glutamine or citrate and nonessential amino acids 
(Holm et al. 1999; Keskintepe et al. 1995), and by replacing BSA with polyvinyl 
alcohol (Keskintepe and Brackett 1996), also support embryo development to the 
blastocyst stage. Defined conditions not only facilitate the improvement of culture 
media to provide a better, more consistent environment for the developing embryo 
but are also critical in disease control (Stringfellow and Givens 2000).

Recently, a culture system for the formation of an in  vivo-like oviduct tissue 
substitute from primary oviduct epithelial cells has been developed. This air-liquid 
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interphase (ALI) culture is fully functional in terms of morphological differentia-
tion (polarization, columnar shape, ciliary activity), generates oviduct fluid surro-
gates, and enables embryonic development up to the blastocyst stage without 
addition of embryo culture medium (Chen et al. 2017).

The success of an IVP laboratory may stem not only from improvements of the 
IVC per se but from the entire IVP system (Baltz 2012; Gardner 2008; Leese 2012). 
The latter includes incubation conditions, gas phase, culture media, oil overlay, 
plastic ware, and embryo density and the volume of the medium. In addition, the 
skills of the staff involved in the entire process are critically important for the suc-
cess of the system.

The use of noninvasive strategies, such as analysis of follicular fluid and culture 
media (after culture), also appears to be useful for the search for molecular biomark-
ers indicative of oocyte competence. The presence of cytokines and growth factors 
in follicular fluid is crucial for determining oocyte quality (Dumesic et al. 2015). In 
this context, the metabolic characterization of the culture media, in which IVP 
embryos are maintained for many hours, may represent an important noninvasive 
tool to either indicate possible predictive biomarkers of viability or to explain IVP 
outcome afterward (Munoz et al. 2014).

In general, bovine IVP is at an advanced stage of development. However, an 
aspect that may change in the future is automation and miniaturization of the IVP 
process by better mimicking in vivo environment, e.g., using microfluidics (Wheeler 
et al. 2007) or an encapsulation technology (Blockeel et al. 2009) to obtain IVP 
embryos of similar quality as the in vivo-derived counterparts. Such systems would 
facilitate the gradual change of the culture medium to meet the precise requirements 
of the developing embryo and overcome substantial limitations of conventional cul-
ture systems. Nevertheless, commercial production of bovine embryos via IVP is 
now successful in many laboratories around the world.

12.3  IVP of Embryos in Other Animals

12.3.1  Farm Animals

As mentioned earlier, IVP is best developed in cattle. Nevertheless, there are often 
species-specific differences, even with cattle (Sartori et al. 2016).

12.3.1.1 Bos indicus/Buffalos
B. indicus animals have greater numbers of retrieved oocytes, due to higher antral 
follicle counts, resulting in higher percentages of viable oocytes, number of blasto-
cysts, and blastocyst rates when compared with B. taurus ones. The better blastocyst 
rates obtained with B. indicus cows and heifers could be attributed to an intrinsically 
better quality of the oocytes (Viana et al. 2012). OPU/IVP is the only option for 
embryo production to advance the implementation of embryo-based biotechnolo-
gies in buffalo production, although it is still in an early developmental phase (Galli 
et al. 2014). OPU works better, and it is more cost-effective than superovulation in 
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Bos indicus females. In this species, OPU has great potential because superovula-
tion (multiple ovulation and embryo transfer) yields poor results compared with 
cattle (Carvalho et al. 2002). The procedure is similar to the one used in Bos taurus. 
Oocyte recovery, embryo production, and offspring obtained have been described 
(Galli et al. 2014), but only about 10%–15% of the oocytes recovered develop to 
transferable embryos. In general, the ovaries of buffalo cows and heifers are small, 
and, in addition, the follicles tend to be fewer and of small diameter.

12.3.1.2 Horses
In the horse, OPU/IVP is now an established procedure for breeding from infertile 
and sporting mares throughout the year. It requires ICSI that in the horse, contrary 
to cattle and buffalo, is very efficient and the only option because conventional IVF 
does not work (Galli et al. 2014).

To collect in vivo matured oocytes from living mares, the most practical, less 
invasive, efficient, and repeatable technique used is the ultrasound-guided trans-
vaginal follicular aspiration using a double-lumen needle (Carnevale et al. 2005). 
Oocytes can be collected from the preovulatory follicle that has reached at least 
35 mm in diameter, 24 h after hCG injection with the donor showing signs of uterine 
edema. The recovery rates are much higher than those for the recovery from imma-
ture follicles (see below), because the COC is expanding and is detached from the 
follicle wall just prior to ovulation. After recovery from the donor mare and some-
times after a few hours of culture to complete maturation, oocytes can either be 
surgically transferred to the oviduct of inseminated recipients called oocyte transfer 
(OT) (Carnevale et al. 2005) or can be subjected to intracytoplasmic sperm injection 
(ICSI). OT has been developed for clinical and research purposes because of fre-
quent failures of conventional IVF. In addition, after ICSI, the fertilized oocytes can 
be transferred surgically to the oviduct of a synchronized recipient or cultured 
in vitro up to the blastocyst stage. Nowadays, ICSI and transfer after IVC are the 
methods of choice.

As only one preovulatory follicle is present at any cycle and only during the 
breeding season, OPU of immature equine oocytes has emerged as useful alterna-
tive. All follicles that are at least 1 cm, also in the nonbreeding season, are flushed. 
Because of the large size of the follicles and the firm attachment to the follicle wall, 
it is necessary to use double-lumen needles with separate in- and outflow channels 
that allow for repeated flushing up to eight to ten times for each follicle (Galli et al. 
2007). As mentioned above, due to the firm attachment of the immature oocyte to 
the follicular wall, follicle flushing is a prerequisite. Mares can be subjected to 
repeated collections without side effects (Mari et al. 2005).

Immature cumulus-oocyte complexes could also be obtained from slaughter-
house ovaries or after ovariectomy. Because of the tight attachment of the oocyte to 
the follicular wall, follicle scraping is the method of choice (Hinrichs and Digiorgio 
1991) rather than slicing or aspiration as done in cattle. Oocytes and their surround-
ing cumulus cells are classified by their cumulus morphology as either compact or 
expanded. Oocytes classified as compact are more likely to have a homogenous 
cytoplasm which is associated with a lower meiotic competence (Hinrichs and 
Williams 1997).
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The optimum duration of maturation is between 24 and 30 h for oocytes with 
expanded and between 30 and 36 h for those with compact cumulus. Once matured, 
there was no difference in developmental competence (rate of blastocyst develop-
ment) between both types of oocytes (Hinrichs 2005). Evaluation of oocytes after 
in vitro maturation and preparation for ICSI requires removal of the cumulus; this is 
more difficult in horses than it is in many other species. The transzonal processes of 
the equine cumulus are extensive.

Only two foals have been reported from conventional IVF of in vivo matured 
oocytes (Palmer et  al. 1991; Cognie et  al. 1992). The first foal, derived from an 
in vitro matured oocyte fertilized by ICSI, was born in 1996 (Squires 1996). To date, 
several laboratories have consistently and reproducibly reported the birth of ICSI 
foals both from in vivo and in vitro matured oocytes. It has been reported that con-
ventional IVF is successful after treatment of sperm with procaine to induce hyper-
action (McPartlin et al. 2009). However, recent data showed that procaine induces 
cytokinesis in equine oocytes associated with elevated levels of parthenogenetic 
development (Leemans et al. 2015).

Good blastocyst rates (20% to 40% of injected oocytes) are achieved using the 
Piezo drill (Hinrichs 2005; Galli et al. 2007). No exogenous activation of the oocytes 
is required. For IVC, a variety of media can be used, and supplementation with 
17–19  mM glucose is important (Hinrichs 2005; Herrera et  al. 2008). Equine 
embryos start to develop to the blastocyst stage at Day 7 of culture. In vivo, an acel-
lular capsule forms inside the zona pellucida after entry of the equine embryo into 
the uterus (Betteridge et al. 1982). The equine capsule is composed of mucin-like 
glycoproteins produced by the trophectoderm, containing a high proportion of sialic 
acid (Oriol et al. 1993). Formation of this capsule is not observed in vitro.

12.3.1.3 Pigs
The pig has been a particularly difficult species to obtain high rates of fertilization 
and subsequent blastocyst development in  vitro. Insufficient oocyte cytoplasmic 
maturation in vitro, high rates of polyspermy, and low embryonic development rates 
are the major obstacles that still need to be overcome (Gil et al. 2010; Romar et al. 
2016).

The developmental potential of porcine IVM oocytes is typically much poorer 
than that of cattle and sheep IVM oocytes. Pigs are generally slaughtered at 6 or 
7 months of age to meet market demands for pork. Therefore, abattoir-derived ova-
ries are usually collected from prepubertal gilts that have not yet experienced regu-
lar estrous cycles. Porcine oocytes are typically matured in vitro for about 40–44 h, 
much longer than oocytes of other livestock species. Only during the first half of 
IVM porcine COC are exposed to gonadotropins (Funahashi and Day 1993).

The use of BSA and caffeine as capacitating agents was an important break-
through and was instrumental for successful in vitro fertilization in the pig. However, 
the rate of polyspermy has been reported to be over 50% in some laboratories 
(Mugnier et al. 2009). The degree of polyspermy was found to be closely associated 
with the number of sperm per oocyte at fertilization (Rath 1992). Unfortunately, 
simply reducing the number of sperm per oocyte within the insemination droplet 
has not been useful to overcome the polyspermy problem, because this also results 
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in a decrease of the overall penetration rates. An issue that confounds the polysper-
mic fertilization in porcine embryo IVP systems is that polyspermic embryos are 
still able to develop to the blastocyst stage.

Despite these difficulties, IVP blastocyst development rates are in the range from 
30% to 50% from monospermically fertilized oocytes in most laboratories (Gil et al. 
2010). The addition of particular components such as porcine follicular fluid into the 
IVM media has been shown to improve the quality of porcine IVM (Algriany et al. 
2004). Hormone supplementation at particular stages of maturation and adding insu-
lin-transferrin-selenium to the media have also contributed toward improved matura-
tion rates (Hu et al. 2011). Due to a refinement of techniques, IVM rates now vary 
from 75% to 85% (Gil et al. 2010). Embryo culture (IVC) has been developed exten-
sively in the pig, and two media compositions are used widely today, including 
NCSU23 and NCSU-37 (Petters and Wells 1993). The first piglets born from IVP 
procedures including IVM/IVF/IVC up to the blastocyst stage were reported in 1989 
(Mattioli et al. 1989). The rate of live offspring resulting from IVP is relatively low 
compared to the number of transferred IVP embryos, and, to date, successful produc-
tion of offspring depends on the transfer of large numbers of blastocysts or earlier 
embryos, to produce large enough litter sizes. The need to transfer relatively large 
numbers of embryos to achieve even a comparatively low litter size and the lack of 
stable non-surgical procedures for embryo transfer remain significant obstacles 
toward the practical implementation of IVP. However, today, the in vitro procedures 
used to mature oocytes and culture embryos are integral to the production of trans-
genic pigs by SCNT (Grupen 2014) or gene editing (Niemann and Petersen 2016).

12.3.1.4 Small Ruminants (Sheep and Goat)
There is less research on assisted reproductive technologies including IVP in small 
ruminants compared to other livestock species. Results on IVP are still unpredict-
able and variable which is an important limitation for its commercial application 
(Paramio and Izquierdo 2016, 2014). This large variation is also seen in in vivo 
embryo production after superovulation treatment. Oocytes are usually recovered 
from the follicle of females via laparoscopic ovum pickup (LOPU) which is less 
traumatic than laparotomy.

The first kid born from IVF of an ovulated oocyte was reported in 1985 and the 
first lamb in 1986. In 1993 the birth of the first kid from an IVM-IVF oocyte and in 
1995 the first kid from IVM-IVF and IVC oocytes was announced (Paramio and 
Izquierdo 2014). Despite all the improvements to increase blastocyst numbers and 
blastocyst quality by modifying the different components of IVP, results are still 
unpredictable and variable with significant differences between laboratories and 
experiments (Paramio and Izquierdo 2016). The most commonly used medium for 
IVM is tissue culture medium (TCM199). Oocytes are usually cultured for 24–27 h 
to achieve maturation. Sperm capacitation is obtained by using heparin and estrus 
sheep serum (ESS) for fresh and frozen buck and ram semen, respectively. IVF is 
usually carried out in SOF medium in sheep and in Tyrode’s albumin lactate pyru-
vate medium supplemented with hypotaurine in goats. Sperm and oocytes are 
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co-incubated for 16–24 h. At present, ICSI is not very efficient in small ruminants. 
Chemical activation of oocytes is an essential part of ICSI protocols in sheep, yield-
ing similar cleavage rates in IVF and sperm-injected oocytes (Shirazi et al. 2009). 
Goat blastocysts have been obtained by ICSI without further chemical activation of 
the oocytes (Keskintepe et  al. 1997). Currently, the most commonly used IVC 
medium for culturing small ruminant embryos is SOF with amino acids and the 
addition of 5%–10% of fetal calf serum or BSA.

It has been suggested that the procedures used in bovine IVP can be applied in 
small ruminants after minimal modifications (Souza-Fabjan et al. 2014).

12.3.1.5 Camelids
The camelid family includes dromedary and Bactrian camels, llamas, alpacas, vicu-
nas, and guanacos. The first two are Old World camelids, whereas the last four are 
known as New World camelids or South American camelids.

The development of IVP techniques has been slow in South American camelids 
(SAC). As for other species, a high number of oocytes can be collected from 
slaughterhouse ovaries. Oocytes can also be obtained from living animals via 
laparotomy [llama (Trasorras et  al. 2009); alpaca (Ratto et  al. 2007)] or ovum 
pickup [llamas (Brogliatti et al. 2000; Berland et al. 2011)]. There are currently 
no reports on ultrasound-guided transvaginal follicle aspiration in alpacas 
(Trasorras et al. 2013). IVM conditions for SAC oocytes are similar to those for 
ruminants. South American camelid semen has very particular characteristics, 
such as high structural viscosity (Casaretto et al. 2012). This characteristic feature 
renders semen handling difficult in the laboratory (Tibary and Vaughan 2006), 
hindering separation of spermatozoa from the seminal plasma and the isolation of 
motile from immotile sperm (Giuliano et al. 2010). In addition, spermatozoa from 
these species show oscillatory movements in the ejaculate rather than progressive 
motility.

Embryos have been produced in vitro using spermatozoa from the epididymis or 
from ejaculates. The advantages of using epididymal spermatozoa are that these 
cells are progressively motile and sample management is easier because of the 
absence of seminal plasma. The rate of development of IVF produced embryos to 
the blastocyst stage after 5 days of culture is only 10% in llamas. Although pregnan-
cies by ET using in vivo produced embryos (Trasorras et al. 2010) have been gener-
ated, no pregnancy has been achieved until now after transcervical transfer of IVP 
embryos to the uterus of previously synchronized females.

All research done so far proves that it is possible to produce llama embryos 
in vitro, but it remains necessary to find an adequate culture medium and conditions 
to favor embryo development to stages that are compatible with establishing preg-
nancies (Trasorras et al. 2013).

For Old World camelids, the developmental rate up to the blastocyst stage is 20% 
in dromedary camels. Only in vivo matured/in vitro fertilized and in vivo matured/
fertilized produced embryos continued normal development until term and resulted 
in the birth of normal and healthy live calves (Tibary et al. 2005).
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12.4  Quality Assessment of Preimplantation Embryos

The ultimate test of the quality of an embryo is its ability to produce live and healthy 
offspring after transfer to a recipient. Morphology and the proportion of embryos 
developing to the blastocyst stage are important criteria to assess developmental 
competence. Evaluation of embryo morphology remains the method of choice for 
selecting viable embryos prior to transfer. It is the most practical and clinically use-
ful approach to assess of embryo viability (Van Soom et al. 2003). A bovine embryo 
grading system developed previously (Lindner and Wright 1983) is, with minor 
modifications, still widely applied in this field and published in the IETS Manual. 
However, embryo morphology alone may not accurate enough to serve as the sole 
criterion for the prediction of embryo developmental potential in vivo.

Identification of the embryo with the highest potential to implant, establish, and 
maintain a pregnancy is a primary goal in assisted reproduction techniques. Culture 
by incubation in a time-lapse imaging system does not harm embryos compared 
with the standard IVP protocol and results in similar overall embryo development 
(Holm et al. 2002). Morphokinetic embryo analysis by monitoring the changes in 
embryo morphology over time is by far the most important noninvasive embryo 
selection tool today and is routinely used in human IVF laboratories (Pribenszky 
et al. 2017). However, due to its high costs, it has not entered the commercial veteri-
nary field.

Embryo selection is based on methods that can give a direct or indirect clue 
regarding the potential of a given embryo to implant. These methodologies are 
either invasive or noninvasive and can be applied at various stages of development 
from the oocyte to cleavage-stage embryos and up to the blastocyst stage. In view of 
the shortcomings of invasive embryo selection, the use of noninvasive selection 
methods seems to be a better strategy toward identification of viable embryos with-
out the risk of possible impacts due to the investigation itself.

Better noninvasive markers and improved techniques for assessing embryo qual-
ity are required. These techniques can provide more information on embryo viabil-
ity (Rocha et al. 2016). For examples, measurement of oxygen consumption using 
the nanorespirometer (Lopes et al. 2007) and amino acid profiling (Sturmey et al. 
2010) can be employed to predict developmental competence and embryo viability 
of in  vitro produced embryos. Although noninvasive approaches are improving, 
invasive ones have been extremely helpful in finding candidate genes to determine 
embryo quality (Wrenzycki et al. 2007; Rizos et al. 2008; Graf et al. 2014).

As epigenetic changes can be induced by environmental factors, understanding 
how vitro production conditions can interfere with these processes is of critical 
importance. The embryonic epigenome will continue to be an important area of 
research, especially to gain a better comprehension how the epigenome influences 
short- and long-term health. A better understanding of the mechanisms and the role 
of epigenetics during early embryogenesis will likely improve in vitro protocols 
and ultimately animal health and productivity. Epigenetic remodeling during pre-
implantation development is complex and dynamic, including changes in DNA 
methylation and histone modifications that occur both on a global scale but also 
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differentially at specific loci. Uncovering the bases of these mechanisms will 
improve our understanding of early development and are promising for improving 
animal fertility and diagnosing and treating infertility problems (Urrego et al. 2014; 
Canovas and Ross 2016).

Despite the large number of publications in the field, it is still a long way to better 
understand and manipulate the mechanisms controlling oocyte maturation and early 
embryonic development. Overcoming these gaps may allow us to improve ART 
results. In particular, studies aiming at finding effective biomarkers for oocyte and 
embryo competence are urgently needed. The field of OMICs seems to be quite 
promising, especially regarding new findings in transcriptomics, proteomics, and 
lipidomics in oocytes, CCs, embryos and EVs within the follicular fluid (Krisher 
et al. 2015; Scott and Treff 2010; Benkhalifa et al. 2015). Future studies on this 
subject might enable the design of more complex, defined, and efficient culture 
conditions for oocytes and embryos.

12.5  Challenges and Future Developments

12.5.1  Culture of Post-Hatching Stages

Post-hatching bovine embryonic development in vitro would allow for the estab-
lishment of better tools for evaluating developmental potential without the need for 
transfer to recipient animals. In vitro development of bovine embryos beyond hatch-
ing has been reported with the establishment of the hypoblast and contemporary 
signs of shedding of the polar trophoblast, i.e., Rauber’s layer. Moreover, elongation 
may be achieved upon physical constraints in agar tunnels (Brandao et al. 2004). 
However, further development of the epiblast is compromised, and embryonic disk 
formation is lacking (Vejlsted et al. 2006). Further studies are needed to determine 
the appropriate physical, chemical, and hormonal environment required to pass 
through this block of development and reach subsequent developmental stages 
in vitro.

In humans, an in vitro system to culture embryos through implantation stages in 
the absence of maternal tissues has been established (Shahbazi et  al. 2016; 
Deglincerti et al. 2016). In contrast to cattle where implantation takes place around 
day 20, the human embryo must implant into the uterus of the mother to survive at 
the seventh day of development.

12.5.2  Genomic Selection (GS)

In the last decade, significant advances in molecular genetics and bioinformatics 
have made it possible to establish genomic selection as a new tool to increase the 
genetic gain in animal breeding (Stock and Reents 2013). The success of genomics 
in animal breeding begins with the use of whole-genome information (Meuwissen 
et al. 2001).
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A chip was developed already in 2007 that allows to genotype >54,000 single 
nucleotide polymorphisms (SNP) simultaneously. These markers represented only 
a small proportion of all discovered SNPs, but they were highly polymorphic in 
several breeds and evenly spaced over the genome. This chip has immediately been 
used to genotype existing progeny-tested bulls. With these first reference popula-
tions, genomic breeding values (GEBV) were accurate enough to rapidly replace 
progeny testing. They were made official in 2009 in different countries, allowing the 
dissemination of semen of young bulls with genomic evaluation. This revolution-
ized selection (Boichard et al. 2016). In order to decrease genotyping costs, a low-
density chip was designed with good imputation accuracy (Boichard et al. 2012), 
i.e., with excellent prediction of missing markers.

Since the introduction of OPU/IVP, substantial efforts have been made to improve 
embryo production efficiency. GS provides new tools for improving the efficiency 
of OPU/IVP programs by selecting donors with high in vitro production results. 
Heritability for qualitative traits (quality of oocytes, cleavage, and developmental 
rates) seems to be lower than for quantitative traits (total number of oocytes, number 
of embryos (Merton et al. 2009)). Different components of reproductive biotech-
nologies have already been associated with SNPs in cattle and could be added as 
new traits to improve fertility as well as efficiency of ARTs in donor cows. In par-
ticular, SNPs associated with the number of viable oocytes, fertilization, cleavage, 
and developmental rates have been recently highlighted (Ponsart et al. 2014).

Furthermore, GEBV can already be determined from preimplantation embryo 
biopsies. Taking embryo biopsies requires highly skilled and trained operators and 
specific equipment, such as an inverted microscope combined with micromanipula-
tors. Three methods, the microblade biopsy, the aspiration biopsy, and the needle 
technique, have been described (Cenariu et al. 2012). Usually, five to ten blasto-
meres are collected as shown in Fig. 12.6. As they do not contain enough DNA for 
SNP chip analyses, a DNA amplification step (whole-genome amplification, WGA) 
has to be included. The mean call rate (proportion of called markers) from WGA of 
genomic DNA stemming from an embryo biopsy should be higher than 85% 

Fig. 12.6 Biopsy taken from 
a bovine morula (red circle, 
biopsied blastomeres)
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ensuring a low amount of allele drop out (ADO) and replication errors. Another 
bottleneck for genotyping techniques combined with IVP remains the cryopreserva-
tion of IVP biopsied embryos (Ponsart et  al. 2014). To overcome this problem, 
blastocentesis (collection of blastocoel fluid) which is less invasive might be per-
formed as already done in horses (Herrera et al. 2015) and humans (Gianaroli et al. 
2014). Furthermore, instead of freezing, biopsied embryos could undergo liquid 
preservation (Ideta et al. 2013).

Taken together, GS has revolutionized cattle breeding schemes. Strategies to 
genotype embryos for multiple markers were developed and combined with embryo 
biopsy.

12.5.3  Exosomes/miRNAs

Recently, a new mechanism of cell communication within the ovarian follicle has 
been discovered which is performed by extracellular vesicles (EVs). Initially, EVs 
were described in ovarian follicular fluid of mares (da Silveira et al. 2012). These 
EVs are lipid bilayer structures secreted by many cell types into the extracellular 
fluid, serving as a vehicle for membrane and cytosolic proteins, lipids, and RNA 
(Raposo and Stoorvogel 2013)). Several articles identified miRNAs in bovine 
(Miles et al. 2012), equine (da Silveira et al. 2012), and human (Santonocito et al. 
2014) follicular fluid, suggesting EVs could be a potential mediator of cell-to-cell 
communication, impacting oocyte and follicle growth (da Silveira et  al. 2015). 
Profiles of miRNAs isolated from EVs present in follicular fluid were described and 
associated with proper cytoplasmic oocyte maturation; hence, these miRNA profiles 
can be used to predict oocyte competence (Sohel et al. 2013). The presence of extra-
cellular miRNAs in various biological fluids, including follicular and seminal fluid, 
their stability, and the relatively easy procedures required to obtain these samples 
make miRNAs excellent candidates for the use of biomarkers of female and male 
reproduction and fertility (Pratt and Calcatera 2016; Tesfaye et al. 2016).

The well-orchestrated expression of genes that are derived from the maternal 
and/or embryonic genome is required for the onset and maintenance of distinct 
morphological changes during the embryonic development. Optimum regulation of 
genes or critical gene regulatory events in favor of early embryonic development 
has been shown to be under control of miRNAs (Hossain et al. 2012). Recently, it 
has been shown that the addition of extracellular vesicles from oviductal fluid from 
the isthmus to in vitro culture of bovine embryos in the absence of serum improves 
development and quality of the embryos (Alminana et al. 2017; Lopera-Vasquez 
et al. 2017; Pavani et al. 2016).

12.5.4  Microfluidics

During IVP gametes and embryos are exposed to changes in pH, osmolarity, and 
mechanical stress, which can interfere with successful blastocyst production. Most 
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of the research efforts to reduce these stress factors have been focused on the media 
rather than finding systems that could reduce the stress introduced by the operator. 
One possible solution to reduce many of these types of stress on gametes/embryos 
may be the application of micro- and nanotechnologies, particularly microfluidic 
technologies. Microfluidic technologies first emerged in the late 1980s and early 
1990s (Masuda et al. 1987). The full potential of microfluidic technology has yet to 
be realized for ARTs in livestock. Major advances in automation and robotics com-
bined with microfluidics have the potential to revolutionize livestock IVP and ani-
mal breeding. New technologies in 3D printing may improve our ability to develop 
physical systems that closely mimic the in vivo environment. Sophisticated pump-
ing and fluid handling methods will allow for the alteration of the fluid milieu that 
surrounds the gametes and embryos. Subtle changes in media composition deliv-
ered at specific time points are achievable using microfluidic devices (Wheeler and 
Rubessa 2017).

12.5.5  Follicle Culture

For bovine and other domestic species, the development of culture systems capable 
of supporting the growth of immature follicles to a stage where they could be 
matured and the oocyte fertilized would ensure a constantly large supply of oocytes 
for experimental and applied purposes. Development of a successful culture system 
for preantral follicles with immature oocytes is dependent upon efficient procedures 
to recover the follicles from the ovary and culture them as well. Basically, there are 
two ways to culture bovine preantral follicles: (1) enclosed in ovarian tissue frag-
ments (slices or strips), also called “in situ,” or (2) using isolated follicles (Araujo 
et al. 2014). Significant advances have been described, and a major achievement 
was the in vitro development of secondary follicles up to early antral stages and the 
production of very low number of embryos (Silva et al. 2016). Although antrum 
formation was reached, culture of bovine secondary follicles did not lead to the 
production of meiotically competent oocytes (Gutierrez et  al. 2000; McLaughlin 
and Telfer 2010). A two-step culture system for bovine preantral follicles has been 
described (McLaughlin and Telfer 2010).

The growth of primordial follicles up to maturation in domestic species is a long 
process, and a better understanding of the physiological and pharmacological 
requirements of the various stages of follicle development is inevitable. This tech-
nique will be of great value for experimental or diagnostic purposes. Profound simi-
larities in the dynamics of follicle development exist between the menstrual cycle in 
women and the estrous cycle in cattle and horses (Ginther et al. 2004). In this regard, 
research using animal models for studying human ovarian function is important to 
provide a hypothetical basis for further studies in women (Baerwald et al. 2009) as 
is for the entire IVP procedure (Menezo and Herubel 2002; Santos et  al. 2014; 
Langbeen et  al. 2015; Wrenzycki et  al. 2007). Further characteristics of early 
embryo biology are shown in Table 12.3 indicating that bovine and human early 
development is remarkably similar.
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12.5.6  Artificial Gametes

Artificial sperm and artificial oocytes generated from pluripotent germline stem 
cells (GSCs), embryonic stem cells (ESCs), or induced pluripotent stem cells 
(iPSCs) have resulted in the birth of viable offspring. Artificial sperm and artificial 
oocytes have also been generated from somatic cells directly, i.e., without documen-
tation of intermediate stages of stem or germ cell development or (epi)genetic sta-
tus. Albeit embryos showed reduced development, haploidization by transplantation 
of a somatic cell nucleus into an enucleated donor oocyte has led to fertilized artifi-
cial oocytes (Hendriks et al. 2015). Complete restoration of gametogenesis in cul-
ture will be important to our understanding of biological events at the cellular and 
molecular levels that are important for germline development. Understanding these 
processes will have enormous impact on applications in the biomedical and agricul-
tural communities (Zeng et al. 2015). Fully potent mature oocytes were generated 
in culture from embryonic stem cells and from induced pluripotent stem cells 
derived from both embryonic fibroblasts and adult tail tip fibroblasts. Moreover, 
pluripotent stem cell lines were re-derived from the eggs that were generated 
in vitro, thereby reconstituting the full female germline cycle in a dish. This culture 
system will provide a platform for elucidating the molecular mechanisms underly-
ing totipotency and the production of oocytes of other mammalian species in culture 
(Hikabe et al. 2016).

12.5.7  Mitochondrial Transfer

A promising advancement in human ART involves the replacement of mutant 
mtDNA in unfertilized oocytes or zygotes by healthy donor mitochondria, thereby 
allowing women carrying mtDNA mutations to circumvent passage of the condition 
to their children (Craven et al. 2010). Two microsurgical nuclear transfer procedures 
termed spindle transfer (ST) and pronuclear transfer (PNT) have been developed. 
The first approach is conducted at the MII oocyte stage. The spindle is isolated and 
transplanted into the cytoplasm of a donated unfertilized oocyte that, itself, has been 
enucleated. The reconstructed oocyte, now free of mutated mtDNA, can be fertil-
ized and subsequently transplanted to the patient (Mitalipov and Wolf 2014). The 
first baby from this approach has been born in 2016 (Zhang et al. 2017). Human 

Table 12.3 Comparative 
aspects of early embryonic 
development

Human Cattle

Oocyte diameter (μm) 150–180 150–180

Time (h) to reach
2-cell stage 30 36
Blastocyst stage 120 150
Hatching stage 150 200
Stage of EGAa 4-cell 8-cell

aEmbryonic genome activation
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pronuclear transfer has also been reported (Craven et al. 2010; Zhang et al. 2016). 
Potential concerns with pronuclear and spindle transfer include the impact these 
procedures might have on the risk of mtDNA carryover during karyoplast transfer, 
embryogenesis, epigenetics, and genome integrity (Craven et al. 2011). These issues 
need to be carefully assessed more basic in-depth research (Reznichenko et  al. 
2016).

12.5.8  Gene Editing

Molecular scissors (MS), including zinc finger nucleases (ZFN), transcription acti-
vator-like endonucleases (TALENS), and meganucleases, possess long recognition 
sites and are thus capable of cutting DNA in a very specific manner. These molecu-
lar scissors mediate targeted genetic alterations by enhancing the DNA mutation 
rate via induction of double-strand breaks at a predetermined genomic site. 
Compared to conventional homologous recombination-based gene targeting, MS 
can increase the targeting rate 10,000-fold, and gene disruption via mutagenic DNA 
repair is stimulated at a similar frequency. The successful application of different 
MS has been shown in mammals, including humans (Petersen and Niemann 2015). 
Recently, another novel class of molecular scissors was described that uses RNAs to 
target a specific genomic site. The CRISPR/Cas9 system is capable of targeting 
even multiple genomic sites in one shot and thus could be superior to ZFNs or 
TALEN, especially by its rather simple design. However, careful sequencing of the 
targeted locus is required for all mutagenesis projects, including the ones by 
CRISPR/Cas9 (Mianne et al. 2017). Confirmation of the desired on-target mutation 
and the detection of off-target events is of utmost importance (Zischewski et  al. 
2017).

The ability to generate gene knockouts is a powerful tool for analysis of gene 
function and for the generation of animals with novel biotechnological or breeding 
applications (Fahrenkrug et al. 2010). In livestock species this process traditionally 
involves the generation of a knockout cell line by utilizing homologous recombina-
tion followed by somatic cell nuclear transfer (SCNT). This remains the method of 
choice for many applications (Kurome et al. 2013); however, application of SCNT 
strategies requires a high level of technical expertise, a reliable supply of oocytes, 
and a large recipient herd, features not available in many areas where gene editing 
might have the greatest impact (Proudfoot et al. 2015). However, in vitro produced 
embryos can be used for rapid introgression of gene edits into defined 
populations.

Recently, CRISPR/Cas9-mediated gene editing has been applied to human 
zygotes (Liang et al. 2015; Kang et al. 2016), and the correction of a pathogenic 
gene mutation has been reported in 2017 (Ma et al. 2017). Efficiency, accuracy, and 
safety of the approach suggest that it has the potential to be used for the correction 
of heritable mutations in human embryos by complementing preimplantation 
genetic diagnosis. However, much remains to be investigated before clinical appli-
cations, including the reproducibility of the technique (Ma et al. 2017).
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 Conclusion
In vitro production (IVP) of livestock embryos follows a well-developed pro-
cedure that is commercially available for most species. Albeit all the improve-
ments in oocyte and embryo culture, at best only 30–35% of immature bovine 
COC develop to the blastocyst stage. Nevertheless in light of the underlying 
ovarian mechanisms with the high degree of atresia, this represents a reason-
able efficiency. But the in vivo situation cannot yet be mimicked sufficiently 
well. The quality of the embryos produced is still impaired in comparison 
with their in  vivo-derived counterparts. This suggests that there are still 
improvements to be made in increasing oocyte and embryo developmental 
competence. More basic research is needed to unravel the molecular mecha-
nisms, e.g., epigenetic reprogramming during early embryonic development 
as well as detailed studies on the composition and interactions of culture 
media. By altering the conditions of oocyte maturation and embryo culture, 
respectively, to mirror more closely the in vivo conditions, it may be possible 
to produce not only more blastocysts but, more importantly, blastocysts of 
better quality.
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